Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 130: 62-70, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191753

RESUMO

Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic factors specifically located in the lateral hypothalamic area (LHA), with its physiological relevance demonstrated in studies using several genetically manipulated mice models. However, the central mechanisms controlling MCH-induced hyperphagia remain largely uncharacterized. Here, we show that central injection of MCH in mice deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the hypothalamic area responsible for this MCH/k-OR interaction, we performed virogenetic studies and found that downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block MCH-induced food intake. Next, we sought to investigate the molecular signaling pathway within the LHA that mediates acute central MCH stimulation of food intake. We found that MCH activates k-OR and that increased levels of phosphorylated extracellular signal regulated kinase (ERK) are associated with downregulation of phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food consumption. Our results reveal that lateral hypothalamic k-OR system modulates the orexigenic action of MCH via the p70S6K/S6 pathway.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Hormônios Hipotalâmicos/administração & dosagem , Melaninas/administração & dosagem , Hormônios Hipofisários/administração & dosagem , Receptores Opioides kappa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/metabolismo , Dependovirus , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Hipofisários/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Proteínas Quinases S6 Ribossômicas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas/metabolismo
2.
Hepatology ; 64(4): 1086-104, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387967

RESUMO

UNLABELLED: The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. CONCLUSIONS: This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104).


Assuntos
Dieta , Estresse do Retículo Endoplasmático , Hormônios Hipotalâmicos/fisiologia , Hipotálamo/fisiologia , Hepatopatias/etiologia , Melaninas/fisiologia , Hormônios Hipofisários/fisiologia , Receptores Opioides kappa/fisiologia , Animais , Inflamação/complicações , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
3.
Physiol Rep ; 2(12)2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501432

RESUMO

Single nucleotide polymorphisms (SNPs) clustered in the first intron of the fat mass and obesity-associated (FTO) gene has been associated with obesity. FTO expression is ubiquitous, with particularly high levels in the hypothalamic area of the brain. To investigate the region-specific role of FTO, AAV technology was applied to knockdown FTO in the ventromedial hypothalamus (VMH). No effect of FTO knockdown was observed on bodyweight or parameters of energy balance. Animals were exposed twice to an overnight fast, followed by a high-fat high-sucrose (HFHS) diet for 1 week. FTO knockdown did not result in a different response to the diets. A region-specific role for FTO in the VMH in the regulation of energy balance could not be found.

4.
Physiol Rep ; 2(7)2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25077509

RESUMO

Neural growth regulator 1 (Negr1) is among the first common variants that have been associated with the regulation of body mass index. Using AAV technology directed to manipulate Negr1 expression in vivo, we find that decreased expression of Negr1 in periventricular hypothalamic areas leads to increases in body weight, presumably via increased food intake. Moreover, we observed that both increased and decreased levels of Negr1 lead to reduced locomotor activity and body temperature. In sum, our results provide further support for a role of hypothalamic expressed Negr1 in the regulation of energy balance.

5.
PLoS One ; 9(5): e97639, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24858547

RESUMO

To promote the efficient and safe application of adeno-associated virus (AAV) vectors as a gene transfer tool in the central nervous system (CNS), transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH). No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.


Assuntos
Sangue/virologia , DNA Recombinante/genética , Dependovirus/genética , Transdução Genética , Núcleo Hipotalâmico Ventromedial/virologia , Animais , Dependovirus/fisiologia , Células HEK293 , Humanos , Ratos , Distribuição Tecidual
6.
Neuropsychopharmacology ; 38(7): 1296-307, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23348063

RESUMO

The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Condicionamento Operante/fisiologia , Ingestão de Alimentos/fisiologia , Grelina/fisiologia , Receptores Opioides kappa/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Encefalinas/metabolismo , Inativação Gênica , Grelina/antagonistas & inibidores , Infusões Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Microinjeções , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Precursores de Proteínas/metabolismo , Ratos , Receptores de Grelina/metabolismo , Receptores de Grelina/fisiologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Esquema de Reforço , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA