Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(11)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030302

RESUMO

BACKGROUND: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS: Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS: We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS: Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Topotecan/farmacologia , Topotecan/uso terapêutico , DNA Topoisomerases Tipo I , Proteínas E7 de Papillomavirus , Vacinas de Subunidades Antigênicas , Neoplasias do Colo do Útero/tratamento farmacológico , Proliferação de Células , Microambiente Tumoral , Ligante CD27
2.
Cell Rep Med ; 4(3): 100939, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36796366

RESUMO

Immune checkpoint therapy (ICT) has the power to eradicate cancer, but the mechanisms that determine effective therapy-induced immune responses are not fully understood. Here, using high-dimensional single-cell profiling, we interrogate whether the landscape of T cell states in the peripheral blood predict responses to combinatorial targeting of the OX40 costimulatory and PD-1 inhibitory pathways. Single-cell RNA sequencing and mass cytometry expose systemic and dynamic activation states of therapy-responsive CD4+ and CD8+ T cells in tumor-bearing mice with expression of distinct natural killer (NK) cell receptors, granzymes, and chemokines/chemokine receptors. Moreover, similar NK cell receptor-expressing CD8+ T cells are also detected in the blood of immunotherapy-responsive cancer patients. Targeting the NK cell and chemokine receptors in tumor-bearing mice shows the functional importance of these receptors for therapy-induced anti-tumor immunity. These findings provide a better understanding of ICT and highlight the use and targeting of dynamic biomarkers on T cells to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Diferenciação Celular , Neoplasias/patologia , Receptores de Quimiocinas
3.
iScience ; 24(1): 101954, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458613

RESUMO

Factors that govern the complex formation of memory T cells are not completely understood. A better understanding of the development of memory T cell heterogeneity is however required to enhance vaccination and immunotherapy approaches. Here we examined the impact of pathogen- and tissue-specific cues on memory CD8+ T cell heterogeneity using high-dimensional single-cell mass cytometry and a tailored bioinformatics pipeline. We identified distinct populations of pathogen-specific CD8+ T cells that uniquely connected to a specific pathogen or associated to multiple types of acute and persistent infections. In addition, the tissue environment shaped the memory CD8+ T cell heterogeneity, albeit to a lesser extent than infection. The programming of memory CD8+ T cell differentiation during acute infection is eventually superseded by persistent infection. Thus, the plethora of distinct memory CD8+ T cell subsets that arise upon infection is dominantly sculpted by the pathogen-specific cues and further shaped by the tissue environment.

4.
Curr Opin Chem Biol ; 53: 167-172, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678713

RESUMO

Dendritic cell (DC)-targeting vaccines show great promise in increasing antitumor immunity. Glycan-engineered vaccines facilitate both DC targeting and increased uptake by DCs for processing and presentation to CD4+ and CD8+ T cells to induce tumor-specific T-cell responses. However, the complexity of various DC subsets in skin tissues, expressing different glycan-binding receptors that can mediate vaccine uptake or drainage of vaccines via lymphatics directly to the lymph node-resident DCs, complicates the success of vaccines. Moreover, the influx of inflammatory immune cells to the site of vaccination, such as monocytes that differentiate to DCs and coexpress glycan-binding receptors, may contribute to the strength of DC-targeting glycovaccines for future clinical use.


Assuntos
Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Engenharia , Polissacarídeos/química , Polissacarídeos/imunologia , Pele/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA