Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med Technol ; 6: 1371447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229370

RESUMO

Introduction: Extra-uterine life support technology could provide a more physiologic alternative for the treatment of extremely premature infants, as it allows further fetal growth and development ex utero. Animal studies have been carried out which involved placing fetuses in a liquid-filled incubator, with oxygen supplied through an oxygenator connected to the umbilical vessels. Hence, by delaying lung exposure to air, further lung development and maturation can take place. This medical intervention requires adjustments to current obstetric procedures to maintain liquid-filled lungs through a so-called transfer procedure. Methods: Our objective was to develop obstetric device prototypes that allow clinicians to simulate this birth procedure to safely transfer the infant from the mother's uterus to an extra-uterine life support system. To facilitate a user-centered design, implementation of medical simulation during early phase design of the prototype development was used. First, the requirements for the procedure and devices were established, by reviewing the literature and through interviewing direct stakeholders. The initial transfer device prototypes were tested on maternal and fetal manikins in participatory simulations with clinicians. Results & discussion: Through analysis of recordings of the simulations, the prototypes were evaluated on effectiveness, safety and usability with latent conditions being identified and improved. This medical simulation-based design process resulted in the development of a set of surgical prototypes and allowed for knowledge building on obstetric care in an extra-uterine life support context.

2.
Adv Simul (Lond) ; 8(1): 29, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042828

RESUMO

BACKGROUND: Research into Artificial Placenta and Artificial Womb (APAW) technology for extremely premature infants (born < 28 weeks of gestation) is currently being conducted in animal studies and shows promising results. Because of the unprecedented nature of a potential treatment and the high-risk and low incidence of occurrence, translation to the human condition is a complex task. Consequently, the obstetric procedure, the act of transferring the infant from the pregnant woman to the APAW system, has not yet been established for human patients. The use of simulation-based user-centered development allows for a safe environment in which protocols and devices can be conceptualized and tested. Our aim is to use participatory design principles in a simulation context, to gain and integrate the user perspectives in the early design phase of a protocol for this novel procedure. METHODS: Simulation protocols and prototypes were developed using an iterative participatory design approach; usability testing, including general and task-specific feedback, was obtained from participants with clinical expertise from a range of disciplines. The procedure made use of fetal and maternal manikins and included animations and protocol task cards. RESULTS: Physical simulation with the active participation of clinicians led to the diffusion of tacit knowledge and an iteratively formed shared understanding of the requirements and values that needed to be implemented in the procedure. At each sequel, participant input was translated into simulation protocols and design adjustments. CONCLUSION: This work demonstrates that simulation-based participatory design can aid in shaping the future of clinical procedure and product development and rehearsing future implementation with healthcare professionals.

3.
PLoS One ; 18(12): e0290659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127930

RESUMO

A liquid-based perinatal life support system (PLS) for extremely premature infants (born before 28 week of gestational age) envisions a connection between the infant's native umbilical cord and an artificial placenta system through cannulation. This system mimics a natural mothers' womb to achieve better organ maturations. The objective of this study is to gain insight into the clinical focus points of umbilical cord cannulation and how cannulation should be addressed in extremely premature infants during the transfer from the uterus to an in-utero simulating liquid-based PLS system. We performed an explorative qualitative study. Twelve medical specialists with knowledge of vessel cannulation participated. We collected data through twelve interviews and two focus group discussions. Data were analyzed using inductive content and constant comparison analysis via open and axial coding. Results were derived on the following topics: (1) cannulation technique, (2) cannula fixation, (3) local and systemic anticoagulation, and (4) vasospasm. A side-entry technique is preferred as this may decrease wall damage, stabilizes the vessel better and ensures continuous blood flow. Sutures, especially via an automatic microsurgery instrument, are favored above glue, stents, or balloons as these may be firmer and faster. Medication possibilities for both vasospasm and anticoagulation should function locally since there were uncertainties regarding the systemic effects. According to the findings of this research, the needed umbilical cord cannulation method should include minimal wall damage, improved vascular stability, blood flow maintenance, a strong fixation connection, and local anticoagulation effect.


Assuntos
Lactente Extremamente Prematuro , Sistemas de Manutenção da Vida , Recém-Nascido , Gravidez , Lactente , Feminino , Humanos , Cordão Umbilical , Cateterismo , Útero , Anticoagulantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA