Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(24): 13430-13435, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780117

RESUMO

The rare availability of suitable single-crystal X-ray diffraction (SCXRD) structural data allows for the direct interpretation of the response of a framework to gas sorption and may lead to the development of improved functional porous materials. We report an in situ SCXRD structural investigation of a flexible MOF subjected to methane, ethane, propane, and butane gas pressures. Supporting theoretical investigations indicate weak host-guest interactions for the crystallographically modelled gaseous guests and, in addition, reveal that a turnstile mechanism facilitates the transport of alkanes through the seemingly nonporous system. Inflections present in the adsorption isotherms are furthermore rationalized as due to gate-opening, but without the expected creation of new accessible space.

2.
Chem Soc Rev ; 50(2): 735-749, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33295892

RESUMO

The generally greater degree of thermal motion of guest molecule(s) relative to the host often impedes their accurate modelling in crystal structures. We propose a 'rule-of-thumb' for estimating the maximum number of guest molecules that can be accommodated in a given amount of accessible space in an adequately modelled host structure. A survey of the Cambridge Structural Database was carried out to evaluate the fractional occupancy θ of the accessible space for almost 40 000 solvates involving 20 common solvents. Using widely accessible software tools, the volume of a guest is estimated as its van der Waals surface, while the guest-occupiable space of a potentially porous host is determined as that available to a virtual spherical probe. We propose terminology more appropriate to the supramolecular interpretation of surface typology: the probe-traversable and probe-accessible boundaries as traced out by the locus and surface of a spherical probe, respectively. High-throughput analysis using commercial and free software packages yielded a mean θ = 51.1(4)%, ranging from 45.3(6)% for hexane to 60(1)% for acetic acid.

3.
Inorg Chem ; 58(13): 8257-8262, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180650

RESUMO

We report a flexible metal-organic framework, [Co2(OBA)2(BPMP)] n (COB), with a new network topology. COB displays structural flexibility under CO2 gas pressure at 298 K, and the resultant porous phases have been characterized by in situ X-ray diffraction analysis. We show that activation yields a framework with discrete voids and substantial reduction in guest-accessible volume. Single-crystal X-ray diffraction analysis under controlled CO2 pressure shows that COB exhibits a breathing mode of flexibility, combined with an overall swelling of the framework. This combination of mechanisms is highly unusual.

4.
Chem Sci ; 10(43): 10018-10024, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32015814

RESUMO

A molecular-level investigation is reported on breathing behaviour of a metal-organic framework (1) in response to CO2 gas pressure. High-pressure gas adsorption shows a pronounced step corresponding to a gate-opening phase transformation from a closed (1cp ) to a large-pore (1lp ) form. A plateau is observed upon desorption corresponding to narrow-pore intermediate form 1np which does not occur during adsorption. These events are corroborated by pressure-gradient differential scanning calorimetry and in situ single-crystal X-ray diffraction analysis under controlled CO2 gas pressure. Complete crystallographic characterisation facilitated a rationalisation of each phase transformation in the series 1cp → 1lp → 1np → 1cp during adsorption and subsequent desorption. Metropolis grand-canonical Monte Carlo simulations and DFT-PBE-D3 interaction energy calculations strongly underpin this first detailed structural investigation of an intermediate phase encountered upon desorption.

5.
Angew Chem Int Ed Engl ; 57(37): 12086-12091, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039600

RESUMO

Structural evidence obtained from in situ X-ray diffraction shows that halogen bonding is responsible for the formation of a dynamic porous molecular solid. This material is surprisingly robust and undergoes reversible switching of its pore volume by activation or by exposure to a series of gases of different sizes and shapes. Volumetric gas sorption and pressure-gradient differential scanning calorimetry (P-DSC) data provide further mechanistic insight into the breathing behavior.

6.
Chem Commun (Camb) ; 54(48): 6208-6211, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29850762

RESUMO

Crystals of 4-aminobenzonitrile grown by sublimation undergo reversible thermosalient phase changes during cooling and subsequent heating. Single-crystal diffraction studies have been carried out at 20 K intervals during cooling from 300 to 100 K in order to explain the structural change that occurs.

7.
Dalton Trans ; 45(10): 4141-9, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26171815

RESUMO

The previously reported anisotropic thermal expansion of a three-dimensional metal-organic framework (MOF) is examined by means of theoretical calculations. Inspection of the 100, 190, 280 and 370 K single crystal X-ray diffraction (SCD) structures indicated a concerted change in the coordination sphere of the zinc centre leading to elongation of the coordination helix in the crystallographic c direction (the Zn-O(H)-Zn angle expands), while the largely unaltered ligands (the ZnLZn distance remains constant) are pulled closer together in the ab plane. This study develops and evaluates a mechanistic model at the DFT level of theory that reproduces the convergent expansion of the coordination helix of the material. The linear increase in energy calculated for extension of a model consisting of six zinc centres and truncated ligands compares favourably with results obtained from a periodic DFT evaluation of the SCD structures. It was also found that the anisotropic thermal expansion trend could be reproduced qualitatively by Molecular Dynamics (MD) simulations in the NPT ensemble.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA