Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prosthet Orthot Int ; 14(3): 117-24, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2095529

RESUMO

A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance and so can not be altered to effect these improvements. Because detailed comparable data on foot stiffness and hysteresis, which are necessary to quantify the differences between different types of feet, are absent in literature, these properties were measured by the authors in a laboratory setup for nine different prosthetic feet, bare and with two different shoes. One test cycle consisted of measurements of load deformation curves in 66 positions, representing the range from heel strike to toe-off. The hysteresis is defined by the energy loss as a part of the total deformation energy. Without shoes significant differences in hysteresis between the feet exist, while with sport shoes the differences in hysteresis between the feet vanish for the most part. Applying a leather shoe leads to an increase of hysteresis loss for all tested feet. The stiffness turned out to be non-constant, so mean stiffness is used.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Membros Artificiais , Pé/fisiologia , Marcha , Fenômenos Biomecânicos , Humanos , Desenho de Prótese
2.
Prosthet Orthot Int ; 14(2): 63-6, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2235301

RESUMO

The acceleration in the sagittal plane of the prosthetic tube at heel strike in normal walking was measured in five healthy amputees with their definitive below-knee prosthesis, every subject using six different prosthetic feet, wearing sport shoes as well as leather shoes. The experiments were carried out in the rehabilitation centre "Het Roessingh", Enschede, The Netherlands. Maximum accelerations were extracted from the acceleration-time-signal. Mean acceleration maxima of all subjects were calculated for each foot-shoe combination to eliminate the individual influence of the subjects. In the axial direction the maximal accelerations demonstrate a clear difference among the prosthetic feet and the shoes, while in dorsoventral (tangential) direction the inter-individual variation in the acceleration extremes dominates the difference between the types of footwear. In comparison with non-amputees the magnitude of the maximal axial acceleration at heel strike does not differ significantly.


Assuntos
Amputados/reabilitação , Membros Artificiais , Marcha/fisiologia , Fenômenos Biomecânicos , Humanos , Perna (Membro) , Masculino , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA