Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501353

RESUMO

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Epilepsia Generalizada , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Lactente , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/genética , Fácies , Proteínas Repressoras/genética , Fatores de Transcrição
2.
Mol Genet Genomic Med ; 8(4): e1103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032478

RESUMO

BACKGROUND: SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS: 87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS: Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION: Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.


Assuntos
Síndromes Epilépticas/genética , Genes Modificadores , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Síndromes Epilépticas/patologia , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
3.
Mol Genet Genomic Med ; 7(7): e00727, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31144463

RESUMO

BACKGROUND: Pathogenic variants in SCN1A cause variable epilepsy disorders with different disease severities. We here investigate whether common variation in the promoter region of the unaffected SCN1A allele could reduce normal expression, leading to a decreased residual function of Nav1.1, and therefore to more severe clinical outcomes in patients affected by pathogenic SCN1A variants. METHODS: Five different SCN1A promoter-haplotypes were functionally assessed in SH-SY5Y cells using Firefly and Renilla luciferase assays. The SCN1A promoter region was analyzed in a cohort of 143 participants with SCN1A pathogenic variants. Differences in clinical features and outcomes between participants with and without common variants in the SCN1A promoter-region of their unaffected allele were investigated. RESULTS: All non-wildtype haplotypes showed a significant reduction in luciferase expression, compared to the wildtype promoter-region (65%-80%, p = 0.039-0.0023). No statistically significant differences in clinical outcomes were observed between patients with and without common promoter variants. However, patients with a wildtype promoter-haplotype on their unaffected SCN1A allele showed a nonsignificant trend for milder phenotypes. CONCLUSION: The nonsignificant observed trends in our study warrant replication studies in larger cohorts to explore the potential modifying role of these common SCN1A promoter-haplotypes.


Assuntos
Epilepsia/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Alelos , Linhagem Celular Tumoral , Criança , Pré-Escolar , Epilepsia/genética , Genes Reporter , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Índice de Gravidade de Doença , Adulto Jovem
4.
J Med Genet ; 56(2): 75-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30368457

RESUMO

BACKGROUND: Dravet syndrome is a severe genetic encephalopathy, caused by pathogenic variants in SCN1A. Low-grade parental mosaicism occurs in a substantial proportion of families (7%-13%) and has important implications for recurrence risks. However, parental mosaicism can remain undetected by methods regularly used in diagnostics. In this study, we use single-molecule molecular inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants and high cost-effectiveness, to investigate the incidence of parental mosaicism of SCN1A variants in a cohort of 90 families and assess the feasibility of this technique. METHODS: Deep sequencing of SCN1A was performed using smMIPs. False positive rates for each of the proband's pathogenic variants were determined in 145 unrelated samples. If parents showed corresponding variant alleles at a significantly higher rate than the established noise ratio, mosaicism was confirmed by droplet digital PCR (ddPCR). RESULTS: Sequence coverage of at least 100× at the location of the corresponding pathogenic variant was reached for 80 parent couples. The variant ratio was significantly higher than the established noise ratio in eight parent couples, of which four (5%) were regarded as true mosaics, based on ddPCR results. The false positive rate of smMIP analysis without ddPCR was therefore 50%. Three of these variants had previously been considered de novo in the proband by Sanger sequencing. CONCLUSION: smMIP technology combined withnext generation sequencing (NGS) performs better than Sanger sequencing in the detection of parental mosaicism. Because parental mosaicism has important implications for genetic counselling and recurrence risks, we stress the importance of implementing high-sensitivity NGS-based assays in standard diagnostics.


Assuntos
Epilepsia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Feminino , Humanos , Masculino , Sondas Moleculares , Linhagem , Reação em Cadeia da Polimerase/métodos
5.
Hum Mutat ; 39(12): 1942-1956, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144217

RESUMO

Variants in the SCN2A gene cause a broad spectrum of epilepsy syndromes of variable severity including benign neonatal-infantile epilepsy (BFNIE), developmental and epileptic encephalopathies (DEE), and other neuropsychiatric disorders. Here, we studied three newly identified variants, which caused distinct phenotypes observed in nine affected individuals of three families, including BFNIE, and DEE with intractable neonatal seizures. Whole cell patch-clamp recordings of transfected tsA201 cells disclosed an increased current density and an increased subthreshold sodium inward current upon an action potential stimulus (p.(Lys908Glu)), a hyperpolarizing shift of the activation curve (p.(Val208Glu) and p.(Thr773Ile)), and an increased persistent current (p.(Thr773Ile)). To evaluate genotype-phenotype correlations, we next developed scoring systems for both the extent of the electrophysiological dysfunction and the severity of the clinical phenotype and applied those to 21 previously and newly functionally characterized SCN2A variants. All inherited variants were associated with a mild clinical phenotype and a lower electrophysiological score compared to those occurring de novo and causing severe phenotypes. Our results thus reveal a nice correlation between the extent of channel dysfunction and the clinical severity.


Assuntos
Substituição de Aminoácidos , Síndromes Epilépticas/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Índice de Gravidade de Doença
6.
Epilepsia ; 59(3): 690-703, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460957

RESUMO

OBJECTIVE: Phenotypes caused by de novo SCN1A pathogenic variants are very variable, ranging from severely affected patients with Dravet syndrome to much milder genetic epilepsy febrile seizures plus cases. The most important determinant of disease severity is the type of variant, with variants that cause a complete loss of function of the SCN1A protein (α-subunit of the neuronal sodium channel Nav1.1) being detected almost exclusively in Dravet syndrome patients. However, even within Dravet syndrome disease severity ranges greatly, and consequently other disease modifiers must exist. A better prediction of disease severity is very much needed in daily practice to improve counseling, stressing the importance of identifying modifying factors in this patient group. We evaluated 128 participants with de novo, pathogenic SCN1A variants to investigate whether mosaicism, caused by postzygotic mutation, is a major modifier in SCN1A-related epilepsy. METHODS: Mosaicism was investigated by reanalysis of the pathogenic SCN1A variants using single molecule molecular inversion probes and next generation sequencing with high coverage. Allelic ratios of pathogenic variants were used to determine whether mosaicism was likely. Selected mosaic variants were confirmed by droplet digital polymerase chain reaction and sequencing of different tissues. Developmental outcome was classified based on available data on intelligence quotient and school functioning/education. RESULTS: Mosaicism was present for 7.5% of de novo pathogenic SCN1A variants in symptomatic patients. Mosaic participants were less severely affected than nonmosaic participants if only participants with truncating variants are considered (distribution of developmental outcome scores, Mann-Whitney U, P = .023). SIGNIFICANCE: Postzygotic mutation is a common phenomenon in SCN1A-related epilepsies. Participants with mosaicism have on average milder phenotypes, suggesting that mosaicism can be a major modifier of SCN1A-related diseases. Detection of mosaicism has important implications for genetic counseling and can be achieved by deep sequencing of unique reads.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética/genética , Mosaicismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Mol Genet Genomic Med ; 4(5): 568-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27652284

RESUMO

BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE genes, we sequenced 26 known and 351 candidate genes for EE in 360 patients. Variants in 25 genes known to be involved in EE or related phenotypes were followed up in 41 patients. We prioritized the candidate genes, and followed up 31 variants in this prioritized subset of candidate genes. RESULTS: Twenty-nine genotypes in known genes for EE (19) or related diseases (10), dominant as well as recessive or X-linked, were classified as likely pathogenic variants. Among those, likely pathogenic de novo variants were found in EE genes that act dominantly, including the recently identified genes EEF1A2, KCNB1 and the X-linked gene IQSEC2. A de novo frameshift variant in candidate gene HNRNPU was the only de novo variant found among the followed-up candidate genes, and the patient's phenotype was similar to a few recent publications. CONCLUSION: Mutations in genes described in OMIM as, for example, intellectual disability gene can lead to phenotypes that get classified as EE in the clinic. We confirmed existing literature reports that de novo loss-of-function HNRNPUmutations lead to severe developmental delay and febrile seizures in the first year of life.

9.
Mol Genet Genomic Med ; 4(4): 457-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27465585

RESUMO

BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

10.
Epilepsia ; 56(9): e114-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122718

RESUMO

Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.


Assuntos
Epilepsias Parciais/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Canais de Potássio Ativados por Sódio , Morte Súbita do Lactente/genética
11.
Pediatrics ; 134(4): 658-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25225143

RESUMO

OBJECTIVES: This study was an assessment of the incidence, course, and etiology of epilepsy with vaccination-related seizure onset in a population-based cohort of children. METHODS: The medical data of 990 children with seizures after vaccination in the first 2 years of life, reported to the National Institute for Public Health and Environment in the Netherlands in 1997 through 2006, were reviewed. Follow-up data were obtained of children who were subsequently diagnosed with epilepsy and had had seizure onset within 24 hours after administration of an inactivated vaccine or 5 to 12 days after a live attenuated vaccine. RESULTS: Follow-up was available for 23 of 26 children (median age: 10.6 years) with epilepsy onset after vaccination. Twelve children developed epileptic encephalopathy, 8 had benign epilepsy, and 3 had encephalopathy before seizure onset. Underlying causes were identified in 15 children (65%) and included SCN1A-related Dravet syndrome (formerly severe myoclonic epilepsy of infancy) or genetic epilepsy with febrile seizures plus syndrome (n = 8 and n = 1, respectively), a protocadherin 19 mutation, a 1qter microdeletion, neuronal migration disorders (n = 2), and other monogenic familial epilepsy (n = 2). CONCLUSIONS: Our results suggest that in most cases, genetic or structural defects are the underlying cause of epilepsy with onset after vaccination, including both cases with preexistent encephalopathy or benign epilepsy with good outcome. These results have significant added value in counseling of parents of children with vaccination-related first seizures, and they might help to support public faith in vaccination programs.


Assuntos
Esquemas de Imunização , Convulsões/etiologia , Convulsões/genética , Vacinação/efeitos adversos , Estudos de Coortes , Feminino , Seguimentos , Humanos , Lactente , Masculino , Países Baixos/epidemiologia , Linhagem , Convulsões/epidemiologia , Fatores de Tempo
12.
J Child Neurol ; 29(5): 704-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24114605

RESUMO

ALDH7A1 and PNPO deficiencies are rare inborn errors of vitamin B6 metabolism causing perinatal seizure disorders. The phenotypic variability, however, is broad. To assess the frequency of these deficiencies in unexplained infantile epilepsy, we screened 113 patients for mutations in both genes. We identified 1 patient with an epilepsy phenotype resembling Dravet syndrome and likely pathogenic mutations in ALDH7A1. Presenting features were highly atypical of pyridoxine-dependent epilepsy, including febrile seizures, response to anticonvulsive drugs, and periods of seizure freedom without pyridoxine treatment. "Hidden" vitamin B6 deficiencies might be rare but treatable causes of unexplained epilepsy extending beyond the classical phenotypes.


Assuntos
Espasmos Infantis/etiologia , Deficiência de Vitamina B 6/complicações , Aldeído Desidrogenase/genética , Eletroencefalografia , Humanos , Lactente , Masculino , Mutação/genética , Estudos Retrospectivos , Espasmos Infantis/genética , Deficiência de Vitamina B 6/genética
13.
J Gen Physiol ; 142(6): 641-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24277604

RESUMO

Generalized epilepsy with febrile seizures plus (GEFS+) is an early onset febrile epileptic syndrome with therapeutic responsive (a)febrile seizures continuing later in life. Dravet syndrome (DS) or severe myoclonic epilepsy of infancy has a complex phenotype including febrile generalized or hemiclonic convulsions before the age of 1, followed by intractable myoclonic, complex partial, or absence seizures. Both diseases can result from mutations in the Nav1.1 sodium channel, and initially, seizures are typically triggered by fever. We previously characterized two Nav1.1 mutants-R859H (GEFS+) and R865G (DS)-at room temperature and reported a mixture of biophysical gating defects that could not easily predict the phenotype presentation as either GEFS+ or DS. In this study, we extend the characterization of Nav1.1 wild-type, R859H, and R865G channels to physiological (37°C) and febrile (40°C) temperatures. At physiological temperature, a variety of biophysical defects were detected in both mutants, including a hyperpolarized shift in the voltage dependence of activation and a delayed recovery from fast and slow inactivation. Interestingly, at 40°C we also detected additional gating defects for both R859H and R865G mutants. The GEFS+ mutant R859H showed a loss of function in the voltage dependence of inactivation and an increased channel use-dependency at 40°C with no reduction in peak current density. The DS mutant R865G exhibited reduced peak sodium currents, enhanced entry into slow inactivation, and increased use-dependency at 40°C. Our results suggest that fever-induced temperatures exacerbate the gating defects of R859H or R865G mutants and may predispose mutation carriers to febrile seizures.


Assuntos
Temperatura Alta , Ativação do Canal Iônico , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Potenciais de Ação , Linhagem Celular , Epilepsia/genética , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética
14.
PLoS One ; 8(6): e65758, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762420

RESUMO

OBJECTIVES: To determine the prevalence of Dravet syndrome, an epileptic encephalopathy caused by SCN1A-mutations, often with seizure onset after vaccination, among infants reported with seizures following vaccination. To determine differences in characteristics of reported seizures after vaccination in children with and without SCN1A-related Dravet syndrome. METHODS: Data were reviewed of 1,269 children with seizures following immunization in the first two years of life, reported to the safety surveillance system of the Dutch national immunization program between 1 January 1997 and 31 December 2006. Selective, prospective follow-up was performed of children with clinical characteristics compatible with a diagnosis of Dravet syndrome. RESULTS: In 21.9% (n = 279) of children, a diagnosis of Dravet syndrome could not be excluded based on available clinical data (median age at follow-up 16 months). Additional follow-up data were obtained in 83.9% (n = 234) of these children (median age 8.5 years). 15 (1.2% of 1,269; 95%CI:0.6 to 1.8%) children were diagnosed with SCN1A-related Dravet syndrome. Of all reported seizures following vaccinations in the first year of life, 2.5% (95%CI:1.3 to 3.6%) were due to SCN1A-related Dravet syndrome, as were 5.9% of reported seizures (95%CI:3.1 to 8.7%) after 2(nd) or 3(rd) DTP-IPV-Hib vaccination. Seizures in children with SCN1A-related Dravet syndrome occurred more often with a body temperature below 38.5°C (57.9% vs. 32.6%, p = 0.020) and reoccurred more often after following vaccinations (26.7% vs. 4.0%, p = 0.003), than in children without a diagnosis of SCN1A-related Dravet Syndrome. CONCLUSIONS: Although Dravet syndrome is a rare genetic epilepsy syndrome, 2.5% of reported seizures following vaccinations in the first year of life in our cohort occurred in children with this disorder. Knowledge on the specific characteristics of vaccination-related seizures in this syndrome might promote early diagnosis and indirectly, public faith in vaccination safety.


Assuntos
Epilepsias Mioclônicas/genética , Vacinação em Massa/efeitos adversos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/genética , Vacinas Virais/efeitos adversos , Criança , Pré-Escolar , Estudos de Coortes , Epilepsias Mioclônicas/induzido quimicamente , Epilepsias Mioclônicas/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Países Baixos/epidemiologia , Prevalência , Convulsões/induzido quimicamente , Convulsões/epidemiologia , Vacinas Virais/administração & dosagem
15.
Eur J Neurosci ; 34(8): 1268-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21864321

RESUMO

Relatively few SCN1A mutations associated with genetic epilepsy with febrile seizures-plus (GEFS+) and Dravet syndrome (DS) have been functionally characterized. In contrast to GEFS+, many mutations detected in DS patients are predicted to have complete loss of function. However, functional consequences are not immediately apparent for DS missense mutations. Therefore, we performed a biophysical analysis of three SCN1A missense mutations (R865G, R946C and R946H) we detected in six patients with DS. Furthermore, we compared the functionality of the R865G DS mutation with that of a R859H mutation detected in a GEFS+ patient; the two mutations reside in the same voltage sensor domain of Na(v) 1.1. The four mutations were co-expressed with ß1 and ß2 subunits in tsA201 cells, and characterized using the whole-cell patch clamp technique. The two DS mutations, R946C and R946H, were nonfunctional. However, the novel voltage sensor mutants R859H (GEFS+) and R865G (DS) produced sodium current densities similar to those in wild-type channels. Both mutants had negative shifts in the voltage dependence of activation, slower recovery from inactivation, and increased persistent current. Only the GEFS+ mutant exhibited a loss of function in voltage-dependent channel availability. Our results suggest that the R859H mutation causes GEFS+ by a mixture of biophysical defects in Na(v) 1.1 gating. Interestingly, while loss of Na(v) 1.1 function is common in DS, the R865G mutation may cause DS by overall gain-of-function defects.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Convulsões Febris/genética , Convulsões Febris/fisiopatologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Ativação do Canal Iônico/genética , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/química , Técnicas de Patch-Clamp , Canais de Sódio/química , Síndrome
16.
Pediatr Int ; 52(2): 234-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19563458

RESUMO

BACKGROUND: Severe myoclonic epilepsy in infancy (SMEI) and borderline SMEI (SMEB) are caused by a mutation in SCN1A, which encodes a voltage-gated sodium channel alpha1-subunit protein. Although many mutations in SCN1A have been associated with clinical features of SMEI or SMEB from different ethnic groups, there have been no such reports from the South-East Asian populations so far. METHODS: Patients 1 and 2 were Indonesian children diagnosed as having SMEI and SMEB based on their clinical features. SCN1A was screened for mutations using a combination of polymerase chain reaction and denaturing high-performance liquid chromatography. Nucleotide substitutions were confirmed on direct sequencing. RESULTS: In patient 1, a G-to-A heterozygous transition was detected at nucleotide 4834 (c.4834G>A) in exon 25, leading to substitution of valine with isoleucine at amino acid position 1612 (p.V1612I) in the SCN1A protein. In patient 2 a T-to-G heterozygous transversion was identified at nucleotide 5266 (c.5266T>G) in exon 26, leading to substitution of cysteine with glycine at amino acid 1756 (p.C1756G) in the SCN1A protein. Both amino acid substitutions might disrupt these highly conserved regions in species from drosophila to human, leading to dysfunction of the protein. p.V1612I and p.C1756G were determined as disease-causing mutations due to their absence in the control population. CONCLUSION: The first cases of SMEI and SMEB are reported in South-East Asian populations. Two novel SCN1A mutations are also identified in these patients, p.V1612I and p.C1756G, which may lead to neuronal excitability or convulsions.


Assuntos
Epilepsias Mioclônicas/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Criança , Humanos , Indonésia , Lactente , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1 , Linhagem , Índice de Gravidade de Doença
17.
Neurosci Lett ; 462(1): 24-9, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19559753

RESUMO

Benign Familial Neonatal Convulsions (BFNC) are a rare epilepsy disorder with an autosomal-dominant inheritance. It is linked to mutations in the potassium channel genes KCNQ2 and KCNQ3. These encode for Kv7.2 and Kv7.3 potassium ion channels, which produce an M-current that regulates the potential firing action in neurons through modulation of the membrane potential. We report on the biophysical and biochemical properties of V589X, T359K and P410fs12X mutant-KCNQ2 ion channels that were detected in three BFNC families. Mutant KCNQ2 cDNAs were co-expressed with WT-KCNQ2 and KCNQ3 cDNAs in HEK293 cells to mimic heterozygous expression of the KCNQ2 mutations in BFNC patients. The resulting potassium currents were measured using patch-clamp techniques and showed an approximately 75% reduction in current and a depolarized shift in the voltage dependence of activation. Furthermore, the time-constant of activation of M-currents in cells expressing T359K and P410fs12X was slower compared to cells expressing only wild-type proteins. Immunofluorescent labeling of HEK293 cells stably expressing GFP-tagged KCNQ2-WT or mutant alpha-subunits indicated cell surface expression of WT, V589X and T359K mutants, suggesting a loss-of-function, while P410fs12X was predominantly retained in the ER and sub-cellular compartments outside the ER suggesting an effectively haplo-insufficient effect.


Assuntos
Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Família , Feminino , Imunofluorescência , Proteínas de Fluorescência Verde , Humanos , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana/fisiologia , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Potássio/metabolismo , Fatores de Tempo , Transfecção
18.
Circulation ; 112(15): 2235-44, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16203908

RESUMO

BACKGROUND: Recordings of the electrical activity of mouse bundle branches (BBs) suggest reduced conduction velocity (CV) in the midseptal compared with the proximal part of the BB. The present study was performed to elucidate the mechanism responsible for this slowing of conduction. METHODS AND RESULTS: Hearts of 16 mice were isolated and Langendorff perfused. After the right and left ventricular free walls were removed, the extracellular activity of the BB was mapped with a 247-point electrode. Premature stimulation was used to estimate CV restitution in the BBs. Expression/distribution of connexin40 (Cx40), Cx43, and Cx45 was determined. Morphology of the conduction system was assessed by whole-mount acetylcholine esterase staining and in Cx40(+/KI-GFP) hearts. Effective CV in the midseptal part of the left and right BBs was reduced by 50% compared with the proximal BB. CV restitution in the proximal and midseptal parts of the BBs was similar. Myocytes labeled positive for Cx40 and Cx45 in the entire BB. Cx43 colocalized with Cx40 and Cx45 only in the very distal BB. Subcellular distribution of gap junctions differed between proximal and distal BBs. Geometry of the midseptal and distal BBs revealed on both sides a profuse network of interlacing fibers, whereas the proximal BB consisted of a single (right BB) or multiple (left BB) parallel fibers. CONCLUSIONS: Comparison of connexin expression/distribution, geometry of the BBs, and CV characteristics suggests that increased path length for activation resulting from BB geometry is responsible for the apparently reduced CV in the midseptal BB of the mouse heart.


Assuntos
Fascículo Atrioventricular/fisiologia , Bloqueio de Ramo/etiologia , Sistema de Condução Cardíaco/fisiologia , Condução Nervosa/fisiologia , Animais , Fascículo Atrioventricular/fisiopatologia , Bloqueio de Ramo/patologia , Bloqueio de Ramo/fisiopatologia , Conexinas/genética , Modelos Animais de Doenças , Eletrofisiologia/métodos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteína alfa-5 de Junções Comunicantes
20.
Cardiovasc Res ; 58(2): 410-22, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12757875

RESUMO

OBJECTIVE: Murine P19 embryonal carcinoma (EC) cells can differentiate into spontaneously beating cardiomyocytes in vitro and have revealed important insight into the early molecular processes of cardiomyocyte differentiation. We assessed the suitability of the P19 cell model for studying cardiac ion channel regulation at the molecular and functional level. METHODS: P19 cells were induced to differentiate towards cardiomyocytes. mRNAs for cardiac markers and ion channels were determined by RT-PCR at six timepoints during the differentiation process. Action potentials and individual ion currents were measured by whole cell patch clamp. RESULTS: Ion channel mRNA expression of several channels is temporally regulated during differentiation, while others show little or no regulation. L-type calcium and transient outward channels are expressed from very early on, while sodium and delayed and inward rectifier channels are upregulated at somewhat later stages during differentiation, which mirrors the in vivo murine cardiomyocyte differentiation during embryogenesis. Spontaneous cardiomyocyte action potentials exhibit a low upstroke velocity, which often can be enhanced by hyperpolarizing the cells, hence activating thusfar dormant ion channels to contribute to the action potential upstroke. Action potential duration decreases considerably during the differentiation of spontaneously beating cells. In late stages, non-beating myocytes can be found which only generate action potentials upon electrical stimulation. Their shape is comparable to neonatal/juvenile ventricular mouse myocytes in culture. Finally, we show that P19-derived cardiomyocytes display a very complete set of functional ion channels. CONCLUSION: P19 cells represent a powerful model to study the regulation of myocardial electrophysiological differentiation at the molecular and functional level.


Assuntos
Carcinoma Embrionário/patologia , Miócitos Cardíacos/fisiologia , Células-Tronco Neoplásicas/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Actinina/análise , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Conexina 43/análise , Células-Tronco de Carcinoma Embrionário , Canais Iônicos/fisiologia , Canais de Potássio KCNQ , Camundongos , Modelos Animais , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Potássio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética , Troponina T/análise , Tubulina (Proteína)/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA