Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(48): 19593-19602, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37976110

RESUMO

Changes in the electronic structure of copper complexes can have a remarkable impact on the catalytic rates, selectivity, and overpotential of electrocatalytic reactions. We have investigated the effect of the half-wave potential (E1/2) of the CuII/CuI redox couples of four copper complexes with different pyridylalkylamine ligands. A linear relationship was found between E1/2 of the catalysts and the logarithm of the maximum rate constant of the reduction of O2 and H2O2. Computed binding constants of the binding of O2 to CuI, which is the rate-determining step of the oxygen reduction reaction, also correlate with E1/2. Higher catalytic rates were found for catalysts with more negative E1/2 values, while catalytic reactions with lower overpotentials were found for complexes with more positive E1/2 values. The reduction of O2 is more strongly affected by the E1/2 than the H2O2 rates, resulting in that the faster catalysts are prone to accumulate peroxide, while the catalysts operating with a low overpotential are set up to accommodate the 4-electron reduction to water. This work shows that the E1/2 is an important descriptor in copper-mediated O2 reduction and that producing hydrogen peroxide selectively close to its equilibrium potential at 0.68 V vs reversible hydrogen electrode (RHE) may not be easy.

2.
ACS Catal ; 13(15): 10094-10103, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37560187

RESUMO

Mononuclear copper complexes relevant to the active site of copper nitrite reductases (CuNiRs) are known to be catalytically active for the reduction of nitrite. Yet, their catalytic mechanism has thus far not been resolved. Here, we provide a complete description of the electrocatalytic nitrite reduction mechanism of a bio-inspired CuNiR catalyst Cu(tmpa) (tmpa = tris(2-pyridylmethyl)amine) in aqueous solution. Through a combination of electrochemical studies, reaction kinetics, and density functional theory (DFT) computations, we show that the protonation steps take place in a stepwise manner and are decoupled from electron transfer. The rate-determining step is a general acid-catalyzed protonation of a copper-ligated nitrous acid (HNO2) species. In view of the growing urge to convert nitrogen-containing compounds, this work provides principal reaction parameters for efficient electrochemical nitrite reduction. This contributes to the investigation and development of nitrite reduction catalysts, which is crucial to restore the biogeochemical nitrogen cycle.

3.
ACS Catal ; 13(8): 5712-5722, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123598

RESUMO

Understanding how multicopper oxidases (MCOs) reduce oxygen in the trinuclear copper cluster (TNC) is of great importance for development of catalysts for the oxygen reduction reaction (ORR). Herein, we report a mechanistic investigation into the ORR activity of the dinuclear copper complex [Cu2L(µ-OH)]3+ (L = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine). This complex is inspired by the dinuclear T3 site found in the MCO active site and confines the Cu centers in a rigid scaffold. We show that the electrochemical reduction of [Cu2L(µ-OH)]3+ follows a proton-coupled electron transfer pathway and requires a larger overpotential due to the presence of the Cu-OH-Cu motif. In addition, we provide evidence that metal-metal cooperativity takes place during catalysis that is facilitated by the constraints of the rigid ligand framework, by identification of key intermediates along the catalytic cycle of [Cu2L(µ-OH)]3+ . Electrochemical studies show that the mechanisms of the ORR and hydrogen peroxide reduction reaction found for [Cu2L(µ-OH)]3+ differ from the ones found for analogous mononuclear copper catalysts. In addition, the metal-metal cooperativity results in an improved selectivity for the four-electron ORR of more than 70% because reaction intermediates can be stabilized better between both copper centers. Overall, the mechanism of the [Cu2L(µ-OH)]3+ -catalyzed ORR in this work contributes to the understanding of how the cooperative function of multiple metals in close proximity can affect ORR activity and selectivity.

4.
ACS Catal ; 8(2): 1052-1061, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29430332

RESUMO

The synthesis, characterization, and electrochemical studies of the dinuclear complex [(MeOH)Fe(Hbbpya)-µ-O-(Hbbpya)Fe(MeOH)](OTf)4 (1) (with Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine) are described. With the help of online electrochemical mass spectrometry, the complex is demonstrated to be active as a water oxidation catalyst. Comparing the results obtained for different electrode materials shows a clear substrate influence of the electrode, as the complex shows a significantly lower catalytic overpotential on graphitic working electrodes in comparison to other electrode materials. Cyclic voltammetry experiments provide evidence that the structure of complex 1 undergoes reversible changes under high-potential conditions, regenerating the original structure of complex 1 upon returning to lower potentials. Results from electrochemical quartz crystal microbalance experiments rule out that catalysis proceeds via deposition of catalytically active material on the electrode surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA