Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS One ; 19(1): e0290493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181033

RESUMO

Currently, over 88 million people are estimated to have adopted a vegan or vegetarian diet. Cysteine is a semi-essential amino acid, which availability is largely dependent on dietary intake of meat, eggs and whole grains. Vegan/vegetarian diets are therefore inherently low in cysteine. Sufficient uptake of cysteine is crucial, as it serves as substrate for protein synthesis and can be converted to taurine and glutathione. We found earlier that intermolecular cystine bridges are essential for the barrier function of the intestinal mucus layer. Therefore, we now investigate the effect of low dietary cystine on the intestine. Mice (8/group) received a high fat diet with a normal or low cystine concentration for 2 weeks. We observed no changes in plasma methionine, cysteine, taurine or glutathione levels or bile acid conjugation after 2 weeks of low cystine feeding. In the colon, dietary cystine restriction results in an increase in goblet cell numbers, and a borderline significant increase mucus layer thickness. Gut microbiome composition and expression of stem cell markers did not change on the low cystine diet. Remarkably, stem cell markers, as well as the proliferation marker Ki67, were increased upon cystine restriction in the small intestine. In line with this, gene set enrichment analysis indicated enrichment of Wnt signaling in the small intestine of mice on the low cystine diet, indicative of increased epithelial proliferation. In conclusion, 2 weeks of cystine restriction did not result in apparent systemic effects, but the low cystine diet increased the proliferative capacity specifically of the small intestine and induced the number of goblet cells in the colon.


Assuntos
Cisteína , Cistina , Humanos , Animais , Camundongos , Intestino Delgado , Glutationa , Taurina
2.
Hepatology ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815360

RESUMO

In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.

3.
Liver Int ; 43(3): 649-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463417

RESUMO

BACKGROUND AND AIMS: Recurrent hepatic encephalopathy (HE) is characterized by hyperammonaemia in combination with neuropsychiatric abnormalities and is treated with lactulose and rifaximin. Rifaximin is a pregnane X receptor (PXR) agonist with low systemic and high intestinal bioavailability. The mechanisms by which it alleviates HE are unclear. We used human small intestinal (hSI) organoids to study whether rifaximin, via PXR activation, affects the epithelial biotransformation machinery, and to gain understanding of its low systemic availability. METHODS: We generated PXR knockdown hSI organoids via lentiviral delivery of short hairpin RNAs. Organoids were cultured for 24 h with rifaximin or rifampicin. RNA-sequencing and metabolomics were performed to analyse gene expression and amino acid metabolism. Luminal rifaximin was quantified by photospectrometry. RESULTS: Treatment of wild-type hSI organoids with rifaximin resulted in >twofold differential expression of 131 genes compared to DMSO. These effects were largely PXR independent and related to amino acid metabolism. Rifaximin decreased expression of glutaminase-2 and increased expression of asparagine synthetase and solute carrier 7A11, thereby increasing intracellular glutamine and asparagine concentrations, indicating active ammonia detoxification. Rifaximin was apically excreted into the lumen in an ATP binding cassette B1 (ABCB1)-dependent manner. CONCLUSIONS: Rifaximin-after uptake into enterocytes-stimulates intracellular nitrogen detoxification by PXR-independent mechanisms. Active apical excretion of rifaximin by ABCB1 into the intestinal lumen explains its low systemic bioavailability. Our study implies that rifaximin, next to modulation of the microbiome, has direct effects on ammonia scavenging in the human small intestinal epithelium.


Assuntos
Encefalopatia Hepática , Receptores de Esteroides , Rifamicinas , Humanos , Rifaximina , Receptor de Pregnano X , Amônia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Aminoácidos
4.
Nat Commun ; 13(1): 7090, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402763

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.


Assuntos
Lipodistrofia , PPAR gama , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Adipócitos/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Lipodistrofia/metabolismo , Sequências Reguladoras de Ácido Nucleico
5.
Adv Exp Med Biol ; 1390: 243-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107323

RESUMO

The nuclear receptor superfamily is a group of transcriptional regulators that orchestrate multiple vital processes such as inflammation, metabolism, and cell proliferation. In recent years, it has become clear that some nuclear receptors form condensates in living cells. These condensates contain high concentrations of proteins and can contain millions of molecules. At these sites, high concentrations of nuclear receptors and co-factors potentially contribute to efficient transcription. While condensate formation has been observed for some nuclear receptors, the majority have unknown condensate formation abilities. Condensate formation abilities for these NRs would implicate an additional layer of regulation for the entire nuclear receptor family. Here, we consider the nuclear receptor superfamily, the current evidence for condensate formation of some of its members and the potential of the whole superfamily to form condensates. Insights into the regulation of assembly or disassembly of nuclear receptor condensates and our considerations for the understudied family members imply that condensate biology might be an important aspect of nuclear receptor-regulated gene transcription.


Assuntos
Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
JHEP Rep ; 3(5): 100344, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34604725

RESUMO

BACKGROUND & AIMS: The interorgan crosstalk between the liver and the intestine has been the focus of intense research. Key in this crosstalk are bile acids, which are secreted from the liver into the intestine, interact with the microbiome, and upon absorption reach back to the liver. The bile acid-activated farnesoid X receptor (Fxr) is involved in the gut-to-liver axis. However, liver-to-gut communication and the roles of bile acids and Fxr remain elusive. Herein, we aim to get a better understanding of Fxr-mediated liver-to-gut communication, particularly in colon functioning. METHODS: Fxr floxed/floxed mice were crossed with cre-expressing mice to yield Fxr ablation in the intestine (Fxr-intKO), liver (Fxr-livKO), or total body (Fxr-totKO). The effects on colonic gene expression (RNA sequencing), the microbiome (16S sequencing), and mucus barrier function by ex vivo imaging were analysed. RESULTS: Despite relatively small changes in biliary bile acid concentration and composition, more genes were differentially expressed in the colons of Fxr-livKO mice than in those of Fxr-intKO and Fxr-totKO mice (3272, 731, and 1824, respectively). The colons of Fxr-livKO showed increased expression of antimicrobial genes, Toll-like receptors, inflammasome-related genes and genes belonging to the 'Mucin-type O-glycan biosynthesis' pathway. Fxr-livKO mice have a microbiome profile favourable for the protective capacity of the mucus barrier. The thickness of the inner sterile mucus layer was increased and colitis symptoms reduced in Fxr-livKO mice. CONCLUSIONS: Targeting of FXR is at the forefront in the battle against metabolic diseases. We show that ablation of Fxr in the liver greatly impacts colonic gene expression and increased the colonic mucus barrier. Increasing the mucus barrier is of utmost importance to battle intestinal diseases such as inflammatory bowel disease, and we show that this might be done by antagonising FXR in the liver. LAY SUMMARY: This study shows that the communication of the liver to the intestine is crucial for intestinal health. Bile acids are key players in this liver-to-gut communication, and when Fxr, the master regulator of bile acid homoeostasis, is ablated in the liver, colonic gene expression is largely affected, and the protective capacity of the mucus barrier is increased.

7.
Front Endocrinol (Lausanne) ; 12: 729828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646233

RESUMO

The Farnesoid X receptor (FXR) is a nuclear receptor which is activated by bile acids. Bile acids function in solubilization of dietary fats and vitamins in the intestine. In addition, bile acids have been increasingly recognized to act as signaling molecules involved in energy metabolism pathways, amongst others via activating FXR. Upon activation by bile acids, FXR controls the expression of many genes involved in bile acid, lipid, glucose and amino acid metabolism. An inability to properly use and store energy substrates may predispose to metabolic disorders, such as obesity, diabetes, cholestasis and non-alcoholic fatty liver disease. These diseases arise through a complex interplay between genetics, environment and nutrition. Due to its function in metabolism, FXR is an attractive treatment target for these disorders. The regulation of FXR expression and activity occurs both at the transcriptional and at the post-transcriptional level. It has been shown that FXR can be phosphorylated, SUMOylated and acetylated, amongst other modifications, and that these modifications have functional consequences for DNA and ligand binding, heterodimerization and subcellular localization of FXR. In addition, these post-translational modifications may selectively increase or decrease transcription of certain target genes. In this review, we provide an overview of the posttranslational modifications of FXR and discuss their potential involvement in cholestatic and metabolic disorders.


Assuntos
Colestase/patologia , Doenças Metabólicas/patologia , Obesidade/patologia , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Animais , Colestase/etiologia , Colestase/metabolismo , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteínas de Ligação a RNA/química
8.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166229, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329708

RESUMO

Necrotizing enterocolitis (NEC) is an often lethal, inflammatory disease of the preterm intestine. The underdeveloped immune system plays an important role; however, the initial trigger for NEC development is likely a damaged intestinal epithelial layer. We hypothesize that due to incomplete maturation of different epithelial cell lineages, nutrients and bacteria are able to damage the epithelial cells and cause the (immature) inflammatory response, food intolerance and malabsorption seen in NEC. Intestinal organoid research has shown that maturation of intestinal epithelial cell lineages is orchestrated by two key signaling pathways: Wnt and Notch. In NEC, these pathways are dysregulated by hyperactivation of Toll-like-receptor-4. Breastfeeding decreases the risk of developing NEC compared to formula milk. Here, we review the intricate link between breast milk components, Wnt and Notch signaling and intestinal epithelial maturation. We argue that (nutritional) interventions regulating these pathways may decrease the risk of NEC development in preterm infants.


Assuntos
Enterocolite Necrosante/patologia , Mucosa Intestinal/patologia , Leite Humano/metabolismo , Nutrientes/metabolismo , Aleitamento Materno , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/prevenção & controle , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Mucosa Intestinal/metabolismo , Leite Humano/química , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166183, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058349

RESUMO

Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.


Assuntos
Processamento Alternativo/genética , Doenças Metabólicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Humanos , Fígado/patologia , Transdução de Sinais/genética
10.
Gastroenterology ; 159(5): 1853-1865.e10, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712104

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4, also called FXR) is a ligand-activated transcription factor that, upon binding of bile acids, regulates the expression of genes involved in bile acid, fat, sugar, and amino acid metabolism. Transcript variants encode the FXR isoforms alpha 1, alpha 2, alpha 3, and alpha 4, which activate different genes that regulate metabolism. Little is known about the mechanisms by which the different isoforms regulate specific genes or how the expression of these genes affects the outcomes of patients given drugs that target FXR. METHODS: We determined genome-wide binding of FXR isoforms in mouse liver organoids that express individual FXR isoforms using chromatin immunoprecipitation, followed by sequencing analysis and DNA motif discovery. We validated regulatory DNA sequences by mobility shift assays and with luciferase reporters using mouse and human FXR isoforms. We analyzed mouse liver organoids and HepG2 cells that expressed the FXR isoforms using chromatin immunoprecipitation, quantitative polymerase chain reaction, and immunoblot assays. Organoids were analyzed for mitochondrial respiration, lipid droplet content, and triglyceride excretion. We used the FXR ligand obeticholic acid to induce FXR activity in organoids, cell lines, and mice. We collected data on the binding of FXR in mouse liver and the expression levels of FXR isoforms and gene targets in human liver tissue and primary human hepatocytes from the Gene Expression Omnibus. RESULTS: In mouse liver cells, 89% of sites that bound FXR were bound by only FXRα2 or FXRα4, via direct interactions with the DNA sequence motif ER-2. Via DNA binding, these isoforms regulated metabolic functions in liver cells, including carbon metabolism and lipogenesis. Incubation with obeticholic acid increased mitochondrial pyruvate transport and reduced insulin-induced lipogenesis in organoids that expressed FXRα2 but not FXRα1. In human liver tissues, levels of FXRα2 varied significantly and correlated with expression of genes predicted to be regulated via an ER-2 motif. CONCLUSIONS: Most metabolic effects regulated by FXR in mouse and human liver cells are regulated by the FXRα2 isoform via specific binding to ER-2 motifs. The expression level of FXRα2 in liver might be used to predict responses of patients to treatment with FXR agonists.


Assuntos
Metabolismo Energético , Hepatócitos/metabolismo , Fígado/metabolismo , Motivos de Nucleotídeos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/citologia , Organoides/metabolismo , Ligação Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares/genética
11.
Sci Rep ; 9(1): 19493, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862954

RESUMO

The nuclear receptor Farnesoid X Receptor (FXR) is activated by bile acids and controls multiple metabolic processes, including bile acid, lipid, carbohydrate, amino acid and energy metabolism. Vitamin A is needed for proper metabolic and immune control and requires bile acids for efficient intestinal absorption and storage in the liver. Here, we analyzed whether FXR regulates vitamin A metabolism. Compared to control animals, FXR-null mice showed strongly reduced (>90%) hepatic levels of retinol and retinyl palmitate and a significant reduction in lecithin retinol acyltransferase (LRAT), the enzyme responsible for hepatic vitamin A storage. Hepatic reintroduction of FXR in FXR-null mice induced vitamin A storage in the liver. Hepatic vitamin A levels were normal in intestine-specific FXR-null mice. Obeticholic acid (OCA, 3 weeks) treatment rapidly reduced (>60%) hepatic retinyl palmitate levels in mice, concurrent with strongly increased retinol levels (>5-fold). Similar, but milder effects were observed in cholic acid (12 weeks)-treated mice. OCA did not change hepatic LRAT protein levels, but strongly reduced all enzymes involved in hepatic retinyl ester hydrolysis, involving mostly post-transcriptional mechanisms. In conclusion, vitamin A metabolism in the mouse liver heavily depends on the FXR and FXR-targeted therapies may be prone to cause vitamin A-related pathologies.


Assuntos
Ácidos e Sais Biliares/farmacologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vitamina A/metabolismo , Aciltransferases/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacologia , Ácido Cólico/metabolismo , Ácido Cólico/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Camundongos Knockout
12.
Medchemcomm ; 10(8): 1412-1419, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673308

RESUMO

Guggulsterone is a promiscuous ligand for endocrine and metabolic lipid receptors traditionally used to treat a number of diseases including diabesity, hyperlipidemia, atherosclerosis, and osteoarthritis. Although relatively weak, its activity at the farnesoid X receptor (FXR) is particularly intriguing as guggulsterone acts as an antagonist with a peculiar ability of gene selective modulation. We report here a chemical biology study with the aim to further characterize the biological action of guggulsterone at the FXR and to obtain further insights into the functional role played by noncanonical FXR binding pockets S2 and S3. Our results suggest that the FXR accessory pockets might act as potential targets for small molecules able to modulate the metabolic activation of the receptor without affecting the anti-inflammatory activity thus revealing a new approach for disclosing selective FXR modulators that might bypass potential side-effects from chronic treatments.

13.
Mol Metab ; 30: 221-229, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767173

RESUMO

OBJECTIVE: Coupling metabolic and reproductive pathways is essential for the survival of species. However, the functions of steroidogenic enzymes expressed in metabolic tissues are largely unknown. METHODS AND RESULTS: Here, we show that in the liver, the classical steroidogenic enzyme Cyp17a1 forms an essential nexus for glucose and ketone metabolism during feed-fast cycles. Both gain- and loss-of-function approaches are used to show that hepatic Cyp17a1 is induced by fasting, catalyzes the production of at least one hormone-ligand (DHEA) for the nuclear receptor PPARα, and is ultimately required for maintaining euglycemia and ketogenesis during nutrient deprivation. The feedback-loop that terminates Cyp17a1-PPARα activity, and re-establishes anabolic liver metabolism during re-feeding is mapped to postprandial bile acid-signaling, involving the receptors FXR, SHP and LRH-1. CONCLUSIONS: Together, these findings represent a novel paradigm of homeostatic control in which nutritional cues feed-forward on to metabolic pathways by influencing extragonadal steroidogenesis.


Assuntos
Fígado/metabolismo , PPAR alfa/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Glucose/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Homeostase , Humanos , Cetonas/metabolismo , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Esteroide 17-alfa-Hidroxilase/fisiologia
14.
Sci Rep ; 9(1): 2193, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778102

RESUMO

The farnesoid X receptor (FXR) belongs to the nuclear receptor family and is activated by bile acids. Multiple, chemically rather diverse, FXR agonists have been developed and several of these compounds are currently tested in clinical trials for NAFLD and cholestasis. Here, we investigated possible FXR-agonism or antagonism of existing FDA/EMA-approved drugs. By using our recently developed FRET-sensor, containing the ligand binding domain of FXR (FXR-LBD), 1280 FDA-approved drugs were screened for their ability to activate FXR in living cells using flow cytometry. Fifteen compounds induced the sensor for more than twenty percent above background. Real-time confocal microscopy confirmed that avermectin B1a, gliquidone, nicardipine, bepridil and triclosan activated the FRET sensor within two minutes. These compounds, including fluticasone, increased mRNA expression of FXR target genes OSTα and OSTß in Huh7 cells, and in most cases also of MRP2, SHP and FGF19. Finally, avermectin B1a, gliquidone, nicardipine and bepridil significantly increased IBABP promoter activity in a luciferase reporter assay in a dose-dependent manner. In conclusion, six FDA/EMA-approved drugs currently used in the clinical practice exhibit moderate agonistic FXR activity. This may on the one hand explain (undesired) side-effects, but on the other hand may form an opportunity for polypharmacology.


Assuntos
Receptores Citoplasmáticos e Nucleares/agonistas , Ácidos e Sais Biliares/metabolismo , Técnicas Biossensoriais , Linhagem Celular , Aprovação de Drogas , Reposicionamento de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ligantes , Estrutura Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Estados Unidos , United States Food and Drug Administration
15.
Pharmacol Ther ; 191: 162-177, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29933033

RESUMO

Bile acids are amphipathic molecules that were previously known to serve as fat solubilizers in the intestine in postprandial conditions. In the last two decades, bile acids have been recognized as signaling molecules regulating energy metabolism pathways via, amongst others, the farnesoid X receptor (FXR). Upon bile acid activation, FXR controls expression of genes involved in bile acid, lipid, glucose and amino acid metabolism. In addition, FXR activation has been shown to limit the inflammatory response. The central role of FXR in various aspects of metabolism and inflammation makes FXR an attractive drug target for several diseases, such as obesity, metabolic syndrome, non-alcoholic steatohepatitis, cholestasis and chronic inflammatory diseases of the liver and intestine. However, most of the currently available compounds impact on all discovered FXR-mediated functions and may have, on top of beneficial effects, undesired biological actions depending on the disease. Therefore, research efforts are increasingly focused on the development of selective FXR modulators, i.e. selective bile acid receptor modulators (SBARMs), aimed at limiting the potential side-effects of conventional full FXR agonists upon chronic treatment. Here, we review the rationale for the design of SBARMs comprising dissociation between metabolic and inflammatory signaling, gene-selective and tissue-specific targeting. We discuss the potential structural mechanisms underlying the binding properties of dissociating ligands of FXR in light of ongoing efforts on the generation of dissociated ligands for otxher nuclear receptors, as well as their pharmacological and therapeutic potential.


Assuntos
Ácidos e Sais Biliares/metabolismo , Desenho de Fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Metabolismo Energético/fisiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Ligantes , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia , Terapia de Alvo Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Endocrinology ; 159(6): 2397-2407, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718163

RESUMO

Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.


Assuntos
Proteínas Correpressoras/genética , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Animais , Análise por Conglomerados , Proteínas Correpressoras/metabolismo , Bases de Dados de Proteínas/normas , Bases de Dados de Proteínas/provisão & distribuição , Desenho de Fármacos , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G159-G170, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597354

RESUMO

The amount of dietary protein is associated with intestinal disease in different vertebrate species. In humans, this is exemplified by the association between high-protein intake and fermentation metabolite concentrations in patients with inflammatory bowel disease. In production animals, dietary protein intake is associated with postweaning diarrhea in piglets and with the occurrence of wet litter in poultry. The underlying mechanisms by which dietary protein contributes to intestinal problems remain largely unknown. Fermentation of undigested protein in the hindgut results in formation of fermentation products including short-chain fatty acids, branched-chain fatty acids, ammonia, phenolic and indolic compounds, biogenic amines, hydrogen sulfide, and nitric oxide. Here, we review the mechanisms by which these metabolites may cause intestinal disease. Studies addressing how different metabolites induce epithelial damage rely mainly on cell culture studies and occasionally on mice or rat models. Often, contrasting results were reported. The direct relevance of such studies for human, pig, and poultry gut health is therefore questionable and does not suffice for the development of interventions to improve gut health. We discuss a roadmap to improve our understanding of gut metabolites and microbial species associated with intestinal health in humans and production animals and to determine whether these metabolite/bacterial networks cause epithelial damage. The outcomes of these studies will dictate proof-of-principle studies to eliminate specific metabolites and or bacterial strains and will provide the basis for interventions aiming to improve gut health.


Assuntos
Proteínas Alimentares/metabolismo , Trato Gastrointestinal/metabolismo , Enteropatias , Animais , Aves , Carboidratos da Dieta/metabolismo , Fermentação , Trato Gastrointestinal/fisiopatologia , Humanos , Enteropatias/metabolismo , Enteropatias/fisiopatologia , Suínos
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 45-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986309

RESUMO

The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states. FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.


Assuntos
Metabolismo Energético/genética , Homeostase/genética , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Alimentos , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Mucosa Intestinal/metabolismo
19.
PLoS One ; 12(2): e0171185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178326

RESUMO

Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing "light" lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing "heavy" lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.


Assuntos
Metabolismo Energético , Fatores de Crescimento de Fibroblastos/farmacologia , Fígado/metabolismo , Proteoma , Proteômica , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes
20.
Gastroenterology ; 152(6): 1462-1476.e10, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28130067

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS: To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS: In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS: In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.


Assuntos
Amônia/metabolismo , Glutamina/biossíntese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ureia/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Proteínas Alimentares/administração & dosagem , Expressão Gênica , Hepatócitos , Fígado/enzimologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA