Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Hum Behav ; 8(6): 1035-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38907029

RESUMO

Board, card or video games have been played by virtually every individual in the world. Games are popular because they are intuitive and fun. These distinctive qualities of games also make them ideal for studying the mind. By being intuitive, games provide a unique vantage point for understanding the inductive biases that support behaviour in more complex, ecological settings than traditional laboratory experiments. By being fun, games allow researchers to study new questions in cognition such as the meaning of 'play' and intrinsic motivation, while also supporting more extensive and diverse data collection by attracting many more participants. We describe the advantages and drawbacks of using games relative to standard laboratory-based experiments and lay out a set of recommendations on how to gain the most from using games to study cognition. We hope this Perspective will lead to a wider use of games as experimental paradigms, elevating the ecological validity, scale and robustness of research on the mind.


Assuntos
Cognição , Jogos de Vídeo , Humanos , Jogos de Vídeo/psicologia , Jogos Experimentais , Motivação
2.
Nature ; 618(7967): 1000-1005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258667

RESUMO

A hallmark of human intelligence is the ability to plan multiple steps into the future1,2. Despite decades of research3-5, it is still debated whether skilled decision-makers plan more steps ahead than novices6-8. Traditionally, the study of expertise in planning has used board games such as chess, but the complexity of these games poses a barrier to quantitative estimates of planning depth. Conversely, common planning tasks in cognitive science often have a lower complexity9,10 and impose a ceiling for the depth to which any player can plan. Here we investigate expertise in a complex board game that offers ample opportunity for skilled players to plan deeply. We use model fitting methods to show that human behaviour can be captured using a computational cognitive model based on heuristic search. To validate this model, we predict human choices, response times and eye movements. We also perform a Turing test and a reconstruction experiment. Using the model, we find robust evidence for increased planning depth with expertise in both laboratory and large-scale mobile data. Experts memorize and reconstruct board features more accurately. Using complex tasks combined with precise behavioural modelling might expand our understanding of human planning and help to bridge the gap with progress in artificial intelligence.


Assuntos
Comportamento de Escolha , Teoria dos Jogos , Jogos Experimentais , Inteligência , Modelos Psicológicos , Humanos , Inteligência Artificial , Cognição , Movimentos Oculares , Heurística , Memória , Tempo de Reação , Reprodutibilidade dos Testes
3.
Proc Natl Acad Sci U S A ; 120(12): e2214840120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913582

RESUMO

How will superhuman artificial intelligence (AI) affect human decision-making? And what will be the mechanisms behind this effect? We address these questions in a domain where AI already exceeds human performance, analyzing more than 5.8 million move decisions made by professional Go players over the past 71 y (1950 to 2021). To address the first question, we use a superhuman AI program to estimate the quality of human decisions across time, generating 58 billion counterfactual game patterns and comparing the win rates of actual human decisions with those of counterfactual AI decisions. We find that humans began to make significantly better decisions following the advent of superhuman AI. We then examine human players' strategies across time and find that novel decisions (i.e., previously unobserved moves) occurred more frequently and became associated with higher decision quality after the advent of superhuman AI. Our findings suggest that the development of superhuman AI programs may have prompted human players to break away from traditional strategies and induced them to explore novel moves, which in turn may have improved their decision-making.


Assuntos
Inteligência Artificial , Tomada de Decisões , Humanos
5.
Nat Hum Behav ; 6(8): 1112-1125, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484209

RESUMO

Making good decisions requires thinking ahead, but the huge number of actions and outcomes one could consider makes exhaustive planning infeasible for computationally constrained agents, such as humans. How people are nevertheless able to solve novel problems when their actions have long-reaching consequences is thus a long-standing question in cognitive science. To address this question, we propose a model of resource-constrained planning that allows us to derive optimal planning strategies. We find that previously proposed heuristics such as best-first search are near optimal under some circumstances but not others. In a mouse-tracking paradigm, we show that people adapt their planning strategies accordingly, planning in a manner that is broadly consistent with the optimal model but not with any single heuristic model. We also find systematic deviations from the optimal model that might result from additional cognitive constraints that are yet to be uncovered.


Assuntos
Cognição , Heurística , Humanos
6.
Proc Natl Acad Sci U S A ; 119(12): e2117432119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294284

RESUMO

SignificanceMany bad decisions and their devastating consequences could be avoided if people used optimal decision strategies. Here, we introduce a principled computational approach to improving human decision making. The basic idea is to give people feedback on how they reach their decisions. We develop a method that leverages artificial intelligence to generate this feedback in such a way that people quickly discover the best possible decision strategies. Our empirical findings suggest that a principled computational approach leads to improvements in decision-making competence that transfer to more difficult decisions in more complex environments. In the long run, this line of work might lead to apps that teach people clever strategies for decision making, reasoning, goal setting, planning, and goal achievement.


Assuntos
Inteligência Artificial , Tomada de Decisões , Humanos
7.
PLoS Comput Biol ; 16(12): e1008483, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33362195

RESUMO

The fate of scientific hypotheses often relies on the ability of a computational model to explain the data, quantified in modern statistical approaches by the likelihood function. The log-likelihood is the key element for parameter estimation and model evaluation. However, the log-likelihood of complex models in fields such as computational biology and neuroscience is often intractable to compute analytically or numerically. In those cases, researchers can often only estimate the log-likelihood by comparing observed data with synthetic observations generated by model simulations. Standard techniques to approximate the likelihood via simulation either use summary statistics of the data or are at risk of producing substantial biases in the estimate. Here, we explore another method, inverse binomial sampling (IBS), which can estimate the log-likelihood of an entire data set efficiently and without bias. For each observation, IBS draws samples from the simulator model until one matches the observation. The log-likelihood estimate is then a function of the number of samples drawn. The variance of this estimator is uniformly bounded, achieves the minimum variance for an unbiased estimator, and we can compute calibrated estimates of the variance. We provide theoretical arguments in favor of IBS and an empirical assessment of the method for maximum-likelihood estimation with simulation-based models. As case studies, we take three model-fitting problems of increasing complexity from computational and cognitive neuroscience. In all problems, IBS generally produces lower error in the estimated parameters and maximum log-likelihood values than alternative sampling methods with the same average number of samples. Our results demonstrate the potential of IBS as a practical, robust, and easy to implement method for log-likelihood evaluation when exact techniques are not available.


Assuntos
Funções Verossimilhança , Modelos Estatísticos , Viés , Simulação por Computador , Interpretação Estatística de Dados
8.
J Vis ; 17(1): 13, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114483

RESUMO

Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the "true" microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise-although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the "true" microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package.


Assuntos
Algoritmos , Teorema de Bayes , Fixação Ocular/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Humanos
9.
Proc Natl Acad Sci U S A ; 110(52): 20929-34, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24309379

RESUMO

A minimal model for studying the mechanical properties of amorphous solids is a disordered network of point masses connected by unbreakable springs. At a critical value of its mean connectivity, such a network becomes fragile: it undergoes a rigidity transition signaled by a vanishing shear modulus and transverse sound speed. We investigate analytically and numerically the linear and nonlinear visco-elastic response of these fragile solids by probing how shear fronts propagate through them. Our approach, which we tentatively label shear front rheology, provides an alternative route to standard oscillatory rheology. In the linear regime, we observe at late times a diffusive broadening of the fronts controlled by an effective shear viscosity that diverges at the critical point. No matter how small the microscopic coefficient of dissipation, strongly disordered networks behave as if they were overdamped because energy is irreversibly leaked into diverging nonaffine fluctuations. Close to the transition, the regime of linear response becomes vanishingly small: the tiniest shear strains generate strongly nonlinear shear shock waves qualitatively different from their compressional counterparts in granular media. The inherent nonlinearities trigger an energy cascade from low to high frequency components that keep the network away from attaining the quasi-static limit. This mechanism, reminiscent of acoustic turbulence, causes a superdiffusive broadening of the shock width.


Assuntos
Vidro/química , Modelos Teóricos , Polímeros/química , Resistência ao Cisalhamento , Som , Acústica , Simulação por Computador , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA