Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 46, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741182

RESUMO

BACKGROUND: Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error ( χ 2 ) of LV myocardial strain, strain rate, and cavity volume. RESULTS: A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients ( χ 2 < 1.6), but minimum parameter reproducibility was poor ( ICC min = 0.01). Iterative reduction yielded a reproducible ( ICC min = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs ( χ 2 < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05). CONCLUSIONS: By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.


Assuntos
Ventrículos do Coração , Processamento de Imagem Assistida por Computador , Humanos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Bloqueio de Ramo/diagnóstico por imagem , Bloqueio de Ramo/fisiopatologia , Fenômenos Biomecânicos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Fenômenos Mecânicos , Masculino , Feminino , Pessoa de Meia-Idade , Modelos Cardiovasculares
2.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288616

RESUMO

AIMS: Identifying heart failure (HF) patients who will benefit from cardiac resynchronization therapy (CRT) remains challenging. We evaluated whether virtual pacing in a digital twin (DT) of the patient's heart could be used to predict the degree of left ventricular (LV) reverse remodelling post-CRT. METHODS AND RESULTS: Forty-five HF patients with wide QRS complex (≥130 ms) and reduced LV ejection fraction (≤35%) receiving CRT were retrospectively enrolled. Echocardiography was performed before (baseline) and 6 months after CRT implantation to obtain LV volumes and 18-segment longitudinal strain. A previously developed algorithm was used to generate 45 DTs by personalizing the CircAdapt model to each patient's baseline measurements. From each DT, baseline septal-to-lateral myocardial work difference (MWLW-S,DT) and maximum rate of LV systolic pressure rise (dP/dtmax,DT) were derived. Biventricular pacing was then simulated using patient-specific atrioventricular delay and lead location. Virtual pacing-induced changes ΔMWLW-S,DT and ΔdP/dtmax,DT were correlated with real-world LV end-systolic volume change at 6-month follow-up (ΔLVESV). The DT's baseline MWLW-S,DT and virtual pacing-induced ΔMWLW-S,DT were both significantly associated with the real patient's reverse remodelling ΔLVESV (r = -0.60, P < 0.001 and r = 0.62, P < 0.001, respectively), while correlation between ΔdP/dtmax,DT and ΔLVESV was considerably weaker (r = -0.34, P = 0.02). CONCLUSION: Our results suggest that the reduction of septal-to-lateral work imbalance by virtual pacing in the DT can predict real-world post-CRT LV reverse remodelling. This DT approach could prove to be an additional tool in selecting HF patients for CRT and has the potential to provide valuable insights in optimization of CRT delivery.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Terapia de Ressincronização Cardíaca/métodos , Estudos Retrospectivos , Resultado do Tratamento , Ecocardiografia , Dispositivos de Terapia de Ressincronização Cardíaca , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA