RESUMO
Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S. thermophilus using a collection of 27 strains as representatives of the species. In addition to CRISPR-Cas and R/M systems, we uncover nine distinct phage-resistance systems including homologues of Kiwa, Gabija, Dodola, defence-associated sirtuins and classical lactococcal/streptococcal abortive infection systems. The genes encoding several of these newly identified S. thermophilus antiphage systems are located in proximity to the genetic determinants of CRISPR-Cas systems thus constituting apparent Phage Defence Islands. Other phage-resistance systems whose encoding genes are not co-located with genes specifying CRISPR-Cas systems may represent anchors to identify additional Defence Islands harbouring, as yet, uncharacterised phage defence systems. We estimate that up to 2.5% of the genetic material of the analysed strains is dedicated to phage defence, highlighting that phage-host antagonism plays an important role in driving the evolution and shaping the composition of dairy streptococcal genomes.
Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/virologia , Bacteriófagos/genética , Fagos de Streptococcus/genética , Genoma Bacteriano/genéticaRESUMO
The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.
Assuntos
Bacteriófagos , Plasmídeos , Plasmídeos/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Fermentação , Leite/microbiologia , Leite/virologia , Lactococcus lactis/virologia , Lactococcus lactis/genética , Lactococcus/virologia , Lactococcus/genética , Microbiologia de AlimentosRESUMO
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Assuntos
Bacteriófagos , Lactococcus , Plasmídeos , Plasmídeos/genética , Bacteriófagos/genética , Lactococcus/genética , Lactococcus/virologiaRESUMO
The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation. Furthermore, the auxiliary gene mobC, two distinct functional homologues of which are present in several plasmids harboured by the pNP40- and pUC11B-carrying host strains, was observed to confer a high-frequency mobilisation phenotype. These findings provide mechanistic insights into how lactococcal conjugative plasmids achieve conjugation and promote mobilisation of non-conjugative plasmids. Ultimately, these insights would be harnessed to optimise conjugation and mobilisation strategies for the rapid and predictable development of robust and technologically improved strains.
Assuntos
Conjugação Genética , Transferência Genética Horizontal , Plasmídeos , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lactococcus lactis/genéticaRESUMO
Plasmids pNP40 and pUC11B encode two prevalent yet divergent conjugation systems, which have been characterized in detail recently. Here, we report the elucidation of the putative adhesins of the pNP40 and pUC11B conjugation systems, encoded by traAd and trsAd, respectively. Despite their significant sequence divergence, TraAd and TrsAd represent the most conserved component between the pNP40- and the pUC11B-encoded conjugation systems and share similar peptidoglycan-hydrolase domains. Protein structure prediction using AlphaFold2 highlighted the structural similarities between their predicted domains, as well as the potential homo-dimeric state of both proteins. Expression of the putative surface adhesins resulted in a cell clumping phenotype not only among cells expressing these surface adhesins but also between adhesin-expressing and non-producing cells. Furthermore, mutant derivatives of plasmids pNP40 or pUC11B carrying a mutation in traAd or trsAd, respectively, were shown to act as efficient donors provided the corresponding recipient expresses either traAd or trsAd, thus demonstrating in trans reciprocal complementarity of these proteins in conjugation systems.
RESUMO
Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems. Here, we describe the detailed transcriptional analysis of the pNP40 and pUC11B conjugation-associated gene clusters, revealing three and five promoters, respectively, for which the corresponding transcriptional start sites were identified. Regulation of several of these promoters, and therefore conjugation, is shown to involve the individual or concerted activities of the corresponding relaxase and transcriptional repressor(s) encoded by each conjugative plasmid. This work highlights how the conjugative potential of these systems may be unlocked, with significant implications for the starter culture and food fermentation industry.
RESUMO
Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11. Among other features, pUC11B encodes a pMRC01-like conjugation system and tetracycline-resistance. In this study, we demonstrate that this plasmid can be conjugated at high frequencies to recipient strains. Mutational analysis of the 22 genes encompassing the presumed pUC11B conjugation cluster revealed the presence of several genes with essential conjugation functions, as well as a gene, trsR, encoding a putative transcriptional repressor of this conjugation cluster. Furthermore, plasmid pUC11B encodes an anti-restriction protein, TrsAR, which facilitates higher conjugation frequencies when pUC11B is transferred into recipient strains containing Type II or Type III RM systems. These findings demonstrate how RM mechanisms can be circumvented when they act as a biological barrier for conjugation events.
Assuntos
Enzimas de Restrição-Modificação do DNA , Lactococcus lactis , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Conjugação Genética , Plasmídeos , Lactococcus lactis/genética , Lactococcus lactis/metabolismoRESUMO
Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB-phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures. In this review, we highlight recent advances in defining phage-host interactions and how phage resistance occurs in different bacterial species. Furthermore, we discuss how these insights continue to transform the dairy fermentation industry and how they also are anticipated to guide food fermentations involving plant-based alternatives in the future.
Assuntos
Bacteriófagos , Lactobacillales , Bacteriófagos/genética , Indústria de Laticínios , FermentaçãoRESUMO
Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in Streptococcus pneumoniae and has since been demonstrated in numerous species, including Bacillus subtilis and Neisseria gonorrhoeae. Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including Lactobacillus spp., Streptococcus thermophilus, and Lactococcus spp. In this review, we collate current knowledge of the phenomenon of natural transformation in Gram-positive bacteria. Furthermore, we describe the mechanism of competence development and its regulation in model bacterial species. We highlight the importance and opportunities for the application of these findings in the context of bacterial starter cultures associated with food fermentations as well as current limitations in this area of research.
Assuntos
Lactobacillales , Bacillus subtilis , FermentaçãoRESUMO
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
RESUMO
Streptococcus thermophilus-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages. The phylogeny of selected phage-encoded receptor binding proteins (RBPs) was assessed, indicating that in certain cases RBP-encoding genes have been acquired separately to the morphogenesis modules, thus highlighting the adaptability of these phages. This review further highlights the significant advances that have been made in defining emergent genetically diverse groups of these phages, while it additionally summarizes remaining knowledge gaps in this research area.
RESUMO
The filamentous fungus Penicillium chrysogenum harbors an astonishing variety of nonribosomal peptide synthetase genes, which encode proteins known to produce complex bioactive metabolites from simple building blocks. Here we report a novel non-canonical tetra-modular nonribosomal peptide synthetase (NRPS) with microheterogenicity of all involved adenylation domains towards their respective substrates. By deleting the putative gene in combination with comparative metabolite profiling various unique cyclic and derived linear tetrapeptides were identified which were associated with this NRPS, including fungisporin. In combination with substrate predictions for each module, we propose a mechanism for a 'trans-acting' adenylation domain.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/biossíntese , Penicillium chrysogenum/enzimologia , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Sequência de Aminoácidos , Southern Blotting , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Espectrometria de Massas , Modelos Biológicos , Dados de Sequência Molecular , Oligopeptídeos/química , Penicillium chrysogenum/genética , Penicillium chrysogenum/crescimento & desenvolvimento , Penicillium chrysogenum/metabolismo , Peptídeos Cíclicos/química , Metabolismo SecundárioRESUMO
The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
Assuntos
Aspergillus niger/genética , Biologia Computacional/métodos , Evolução Molecular , Variação Genética , Genoma Fúngico/genética , Filogenia , Sequência de Bases , Perfilação da Expressão Gênica , Rearranjo Gênico/genética , Transferência Genética Horizontal/genética , Genômica/métodos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genéticaRESUMO
The filamentous fungus Aspergillus niger is widely exploited for industrial production of enzymes and organic acids. An integrated genomics approach was developed to determine cellular responses of A. niger to protein production in well-controlled fermentations. Different protein extraction methods in combination with automated sample processing and protein identification allowed quantitative analysis of 898 proteins. Three different enzyme overproducing strains were compared to their isogenic fungal host strains. Clear differences in response to the amount and nature of the overproduced enzymes were observed. The corresponding genes of the differentially expressed proteins were studied using transcriptomics. Genes that were up-regulated both at the proteome and transcriptome level were selected as leads for generic strain improvement. Up-regulated proteins included proteins involved in carbon and nitrogen metabolism as well as (oxidative) stress response, and proteins involved in protein folding and endoplasmic reticulum-associated degradation (ERAD). Reduction of protein degradation through the removal of the ERAD factor doaA combined with overexpression of the oligosaccharyl transferase sttC in A. niger overproducing beta-glucuronidase (GUS) strains indeed resulted in a small increase in GUS expression.
Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genômica , Microbiologia Industrial , Perfilação da Expressão Gênica , Glucuronidase/biossíntese , Glucuronidase/genética , Proteoma/análiseRESUMO
Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and alpha-aminoadipic acid-precursors for penicillin biosynthesis-as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling beta-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.
Assuntos
Mapeamento Cromossômico/métodos , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Penicilina G/metabolismo , Penicillium chrysogenum/genética , Fatores de Transcrição/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA/métodosRESUMO
Fungal mycelia are exposed to heterogenic substrates. The substrate in the central part of the colony has been (partly) degraded, whereas it is still unexplored at the periphery of the mycelium. We here assessed whether substrate heterogeneity is a main determinant of spatial gene expression in colonies of Aspergillus niger. This question was addressed by analyzing whole-genome gene expression in five concentric zones of 7-day-old maltose- and xylose-grown colonies. Expression profiles at the periphery and the center were clearly different. More than 25% of the active genes showed twofold differences in expression between the inner and outermost zones of the colony. Moreover, 9% of the genes were expressed in only one of the five concentric zones, showing that a considerable part of the genome is active in a restricted part of the colony only. Statistical analysis of expression profiles of colonies that had either been or not been transferred to fresh xylose-containing medium showed that differential expression in a colony is due to the heterogeneity of the medium (e.g., genes involved in secretion, genes encoding proteases, and genes involved in xylose metabolism) as well as to medium-independent mechanisms (e.g., genes involved in nitrate metabolism and genes involved in cell wall synthesis and modification). Thus, we conclude that the mycelia of 7-day-old colonies of A. niger are highly differentiated. This conclusion is also indicated by the fact that distinct zones of the colony grow and secrete proteins, even after transfer to fresh medium.
Assuntos
Aspergillus niger/metabolismo , Regulação Fúngica da Expressão Gênica , Micélio/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genoma Fúngico , Glucanos/química , Maltose/química , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico , Fatores de Tempo , Transativadores/metabolismo , Xilose/químicaRESUMO
Genetic recombination is an important tool in strain breeding in many organisms. We studied the possibilities of mitotic recombination in strain breeding of the asexual fungus Aspergillus niger. By identifying genes that complemented mapped auxotrophic mutations, the physical map was compared to the genetic map of chromosome III using the genome sequence. In a program to construct a chromosome III-specific marker strain by selecting mitotic crossing-over in diploids, a mitotic recombination hotspot was identified. Analysis of the mitotic recombination hotspot revealed some physical features, elevated basal transcription and a possible correlation with purine stretches.
Assuntos
Aspergillus niger/genética , Cromossomos Fúngicos/genética , Mitose , Recombinação Genética , Transcrição Gênica , Mapeamento Cromossômico , Segregação de Cromossomos , Troca Genética , Diploide , Genes Fúngicos , Ligação Genética , Marcadores Genéticos , Análise em Microsséries , Mutação , Purinas/químicaRESUMO
BACKGROUND: Filamentous fungi such as Aspergillus niger have a high capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases the yields of non-fungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of mis-folding of heterologous proteins in the ER during early stages of secretion, with related stress responses in the host, including the unfolded protein response (UPR). This study aims at uncovering transcriptional and translational responses occurring in A. niger exposed to secretion stress. RESULTS: A genome-wide transcriptional analysis of protein secretion-related stress responses was determined using Affymetrix DNA GeneChips and independent verification for selected genes. Endoplasmic reticulum (ER)-associated stress was induced either by chemical treatment of the wild-type cells with dithiothreitol (DTT) or tunicamycin, or by expressing a human protein, tissue plasminogen activator (t-PA). All of these treatments triggered the UPR, as shown by the expression levels of several well-known UPR target genes. The predicted proteins encoded by most of the up-regulated genes function as part of the secretory system including chaperones, foldases, glycosylation enzymes, vesicle transport proteins, and ER-associated degradation proteins. Several genes were down-regulated under stress conditions and these included several genes that encode secreted enzymes. Moreover, translational regulation under ER stress was investigated by polysomal fractionation. This analysis confirmed the post-transcriptional control of hacA expression and highlighted that differential translation also occurs during ER stress, in particular for some genes encoding secreted proteins or proteins involved in ribosomal biogenesis and assembly. CONCLUSION: This is first genome-wide analysis of both transcriptional and translational events following protein secretion stress. Insight has been gained into the molecular basis of protein secretion and secretion-related stress in an effective protein-secreting fungus, and provides an opportunity to identify target genes for manipulation in strain improvement strategies.