Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
JAMA Neurol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709502

RESUMO

Importance: Out-of-hospital cardiac arrest survival rates have markedly risen in the last decades, but neurological outcome only improved marginally. Despite research on more than 20 neuroprotective strategies involving patients in comas after cardiac arrest, none have demonstrated unequivocal evidence of efficacy; however, treatment with acyl-ghrelin has shown improved functional and histological brain recovery in experimental models of cardiac arrest and was safe in a wide variety of human study populations. Objective: To determine safety and potential efficacy of intravenous acyl-ghrelin to improve neurological outcome in patients in a coma after cardiac arrest. Design, Setting, and Participants: A phase 2, double-blind, placebo-controlled, multicenter, randomized clinical trial, Ghrelin Treatment of Comatose Patients After Cardiac Arrest: A Clinical Trial to Promote Cerebral Recovery (GRECO), was conducted between January 18, 2019, and October 17, 2022. Adult patients 18 years or older who were in a comatose state after cardiac arrest were assessed for eligibility; patients were from 3 intensive care units in the Netherlands. Expected death within 48 hours or unfeasibility of treatment initiation within 12 hours were exclusion criteria. Interventions: Patients were randomized to receive intravenous acyl-ghrelin, 600 µg (intervention group), or placebo (control group) within 12 hours after cardiac arrest, continued for 7 days, twice daily, in addition to standard care. Main Outcomes and Measures: Primary outcome was the score on the Cerebral Performance Categories (CPC) scale at 6 months. Safety outcomes included any serious adverse events. Secondary outcomes were mortality and neuron-specific enolase (NSE) levels on days 1 and 3. Results: A total of 783 adult patients in a coma after cardiac arrest were assessed for eligibility, and 160 patients (median [IQR] age, 68 [57-75] years; 120 male [75%]) were enrolled. A total of 81 patients (51%) were assigned to the intervention group, and 79 (49%) were assigned to the control group. The common odds ratio (OR) for any CPC improvement in the intervention group was 1.78 (95% CI, 0.98-3.22; P = .06). This was consistent over all CPC categories. Mean (SD) NSE levels on day 1 after cardiac arrest were significantly lower in the intervention group (34 [6] µg/L vs 56 [13] µg/L; P = .04) and on day 3 (28 [6] µg/L vs 52 [14] µg/L; P = .08). Serious adverse events were comparable in incidence and type between the groups. Mortality was 37% (30 of 81) in the intervention group vs 51% (40 of 79) in the control group (absolute risk reduction, 14%; 95% CI, -2% to 29%; P = .08). Conclusions and Relevance: In patients in a coma after cardiac arrest, intravenous treatment with acyl-ghrelin was safe and potentially effective to improve neurological outcome. Phase 3 trials are needed for conclusive evidence. Trial Registration: Clinicaltrialsregister.eu: EUCTR2018-000005-23-NL.

3.
BMC Gastroenterol ; 24(1): 114, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500056

RESUMO

Surface electroenterography is a potential non-invasive alternative to current diagnostics of colonic motility disorders. However, electrode positioning in electroenterography is often based on general anatomy and may lack generalizability. Furthermore, the repeatability of electroenterography measurements is unknown. This study aimed to evaluate ultrasound-guided electrode positioning for electroenterography measurements and to determine the repeatability of those measurements. In ten healthy adults, two electroenterography procedures were performed, consisting of fasting, ultrasound-guided electrode localization and two 20-minute electroenterography recordings separated by a meal. The dominant frequency, the mean power density (magnitude of colonic motility) and the power percent difference (relative pre- to postprandial increase in magnitude) were determined. Repeatability was determined by Lin's concordance correlation coefficient. The results demonstrated that the dominant frequency did not differ between pre- and postprandial recordings and was 3 cpm, characteristic of colonic motility. The mean power density increased between the pre- and postprandial measurements, with an average difference of over 200%. The repeatability of both the dominant frequency and power density was poor to moderate, whereas the correlation coefficient of the power percent difference was poor. Concluding, ultrasound-guided surface electroenterography seems able to measure the gastrocolic reflex, but the dissatisfactory repeatability necessitates optimization of the measurement protocol.


Assuntos
Colo , Jejum , Adulto , Humanos , Estudos de Viabilidade , Colo/diagnóstico por imagem , Ultrassonografia de Intervenção , Motilidade Gastrointestinal
4.
Neurol Sci ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366159

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) affects 48 million people annually, with up to 30% experiencing long-term complaints such as fatigue, blurred vision, and poor concentration. Assessing neurophysiological features related to visual attention and outcome measures aids in understanding clinical symptoms and prognostication. METHODS: We recorded EEG and eye movements in mTBI patients during a computerized task performed in the acute (< 24 h, TBI-A) and subacute phase (4-6 weeks thereafter). We estimated the posterior dominant rhythm, reaction times (RTs), fixation duration, and event-related potentials (ERPs). Clinical outcome measures were assessed using the Head Injury Symptom Checklist (HISC) and the Extended Glasgow Outcome Scale (GOSE) at 6 months post-injury. Similar analyses were performed in an age-matched control group (measured once). Linear mixed effect modeling was used to examine group differences and temporal changes within the mTBI group. RESULTS: Twenty-nine patients were included in the acute phase, 30 in the subacute phase, and 19 controls. RTs and fixation duration were longer in mTBI patients compared to controls (p < 0.05), but not between TBI-A and TBI-S (p < 0.05). The frequency of the posterior dominant rhythm was significantly slower in TBI-A (0.6 Hz, p < 0.05) than TBI-S. ERP mean amplitude was significantly lower in mTBI patients than in controls. Neurophysiological features did not significantly relate to clinical outcome measures. CONCLUSION: mTBI patients demonstrate impaired processing speed and stimulus evaluation compared to controls, persisting up to 6 weeks after injury. Neurophysiological features in mTBI can assist in determining the extent and temporal progression of recovery.

5.
Eur Psychiatry ; 67(1): e16, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351599

RESUMO

BACKGROUND: Most patients show temporary impairments in clinical orientation after electroconvulsive therapy (ECT)-induced seizures. It is unclear how postictal reorientation relates to electroencephalography (EEG) restoration. This relationship may provide additional measures to quantify postictal recovery and shed light on neurophysiological aspects of reorientation after ECT. METHODS: We analyzed prospectively collected clinical and continuous ictal and postictal EEG data from ECT patients. Postictal EEG restoration up to 1 h was estimated by the evolution of the normalized alpha-delta ratio (ADR). Times to reorientation in the cognitive domains of person, place, and time were assessed postictally. In each cognitive domain, a linear mixed model was fitted to investigate the relationships between time to reorientation and postictal EEG restoration. RESULTS: In total, 272 pairs of ictal-postictal EEG and reorientation times of 32 patients were included. In all domains, longer time to reorientation was associated with slower postictal EEG recovery. Longer seizure duration and postictal administration of midazolam were related to longer time to reorientation in all domains. At 1-hour post-seizure, most patients were clinically reoriented, while their EEG had only partly restored. CONCLUSIONS: We show a relationship between postictal EEG restoration and clinical reorientation after ECT-induced seizures. EEG was more sensitive than reorientation time in all domains to detect postictal recovery beyond 1-hour post-seizure. Our findings indicate that clinical reorientation probably depends on gradual cortical synaptic recovery, with longer seizure duration leading to longer postsynaptic suppression after ECT seizures.


Assuntos
Eletroconvulsoterapia , Humanos , Convulsões/terapia , Fatores de Tempo , Eletroencefalografia
6.
Epilepsia ; 65(1): 177-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973611

RESUMO

OBJECTIVE: Postictal symptoms may result from cerebral hypoperfusion, which is possibly a consequence of seizure-induced vasoconstriction. Longer seizures have previously been shown to cause more severe postictal hypoperfusion in rats and epilepsy patients. We studied cerebral perfusion after generalized seizures elicited by electroconvulsive therapy (ECT) and its relation to seizure duration. METHODS: Patients with a major depressive episode who underwent ECT were included. During treatment, 21-channel continuous electroencephalogram (EEG) was recorded. Arterial spin labeling magnetic resonance imaging scans were acquired before the ECT course (baseline) and approximately 1 h after an ECT-induced seizure (postictal) to quantify global and regional gray matter cerebral blood flow (CBF). Seizure duration was assessed from the period of epileptiform discharges on the EEG. Healthy controls were scanned twice to assess test-retest variability. We performed hypothesis-driven Bayesian analyses to study the relation between global and regional perfusion changes and seizure duration. RESULTS: Twenty-four patients and 27 healthy controls were included. Changes in postictal global and regional CBF were correlated with seizure duration. In patients with longer seizure durations, global decrease in CBF reached values up to 28 mL/100 g/min. Regional reductions in CBF were most prominent in the inferior frontal gyrus, cingulate gyrus, and insula (up to 35 mL/100 g/min). In patients with shorter seizures, global and regional perfusion increased (up to 20 mL/100 g/min). These perfusion changes were larger than changes observed in healthy controls, with a maximum median global CBF increase of 12 mL/100 g/min and a maximum median global CBF decrease of 20 mL/100 g/min. SIGNIFICANCE: Seizure duration is a key factor determining postictal perfusion changes. In future studies, seizure duration needs to be considered as a confounding factor due to its opposite effect on postictal perfusion.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Humanos , Animais , Ratos , Eletroconvulsoterapia/efeitos adversos , Eletroconvulsoterapia/métodos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Teorema de Bayes , Convulsões/etiologia , Perfusão , Circulação Cerebrovascular , Eletroencefalografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37947826

RESUMO

Electroconvulsive therapy (ECT) is an effective treatment for major depression, but its working mechanisms are poorly understood. Modulation of excitation/inhibition (E/I) ratios may be a driving factor. Here, we estimate cortical E/I ratios in depressed patients and study whether these ratios change over the course of ECT in relation to clinical effectiveness. Five-minute resting-state electroencephalography (EEG) recordings of 28 depressed patients were recorded before and after their ECT course. Using a novel method based on critical dynamics, functional E/I (fE/I) ratios in the frequency range of 0.5-30 Hz were estimated in frequency bins of 1 Hz for the whole brain and for pre-defined brain regions. Change in Hamilton Depression Rating Scale (HDRS) score was used to estimate clinical effectiveness. To account for test-retest variability, repeated EEG recordings from an independent sample of 31 healthy controls (HC) were included. At baseline, no differences in whole brain and regional fE/I ratios were found between patients and HC. At group level, whole brain and regional fE/I ratios did not change over the ECT course. However, in responders, frontal fE/I ratios in the frequencies 12-28 Hz increased significantly (pFDR < 0.05 [FDR = false discovery rate]) over the ECT course. In non-responders and HC, no changes occurred over time. In this sample, frontal fE/I ratios increased over the ECT course in relation to treatment response. Modulation of frontal fE/I ratios may be an important mechanism of action of ECT.

8.
Crit Care Med ; 51(12): 1802-1811, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855659

RESUMO

OBJECTIVES: To develop the International Cardiac Arrest Research (I-CARE), a harmonized multicenter clinical and electroencephalography database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. DESIGN: Multicenter cohort, partly prospective and partly retrospective. SETTING: Seven academic or teaching hospitals from the United States and Europe. PATIENTS: Individuals 16 years old or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous electroencephalography monitoring were included. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: Clinical and electroencephalography data were harmonized and stored in a common Waveform Database-compatible format. Automated spike frequency, background continuity, and artifact detection on electroencephalography were calculated with 10-second resolution and summarized hourly. Neurologic outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical data and 56,676 hours (3.9 terabytes) of continuous electroencephalography data for 1,020 patients. Most patients died ( n = 603, 59%), 48 (5%) had severe neurologic disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean electroencephalography recording duration depending on the neurologic outcome (range, 53-102 hr for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least 1 hour was seen in 258 patients (25%) (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least 1 hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. CONCLUSIONS: The I-CARE consortium electroencephalography database provides a comprehensive real-world clinical and electroencephalography dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal electroencephalography patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.


Assuntos
Coma , Parada Cardíaca , Humanos , Adolescente , Coma/diagnóstico , Estudos Retrospectivos , Estudos Prospectivos , Parada Cardíaca/diagnóstico , Eletroencefalografia
9.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693458

RESUMO

Objective: To develop a harmonized multicenter clinical and electroencephalography (EEG) database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. Design: Multicenter cohort, partly prospective and partly retrospective. Setting: Seven academic or teaching hospitals from the U.S. and Europe. Patients: Individuals aged 16 or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous EEG monitoring were included. Interventions: not applicable. Measurements and Main Results: Clinical and EEG data were harmonized and stored in a common Waveform Database (WFDB)-compatible format. Automated spike frequency, background continuity, and artifact detection on EEG were calculated with 10 second resolution and summarized hourly. Neurological outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical and 56,676 hours (3.9 TB) of continuous EEG data for 1,020 patients. Most patients died (N=603, 59%), 48 (5%) had severe neurological disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean EEG recording duration depending on the neurological outcome (range 53-102h for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least one hour was seen in 258 (25%) patients (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least one hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. Conclusions: The International Cardiac Arrest Research (I-CARE) consortium database provides a comprehensive real-world clinical and EEG dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal EEG patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.

10.
Clin Neurophysiol ; 154: 43-48, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541076

RESUMO

OBJECTIVE: Interictal epileptiform discharges (IED) are hallmark biomarkers of epilepsy which are typically detected through visual analysis. Deep learning has shown potential in automating IED detection, which could reduce the burden of visual analysis in clinical practice. This is particularly relevant for ambulatory electroencephalograms (EEGs), as these entail longer review times. METHODS: We applied a previously trained neural network to an independent dataset of 100 ambulatory EEGs (average duration 20.6 h). From these, 42 EEGs contained IEDs, 25 were abnormal without IEDs and 33 were normal. The algorithm flagged 2 second epochs that it considered IEDs. The EEGs were provided to an expert, who used NeuroCenter EEG to review the recordings. The expert concluded if each recording contained IEDs, and was timed during the process. RESULTS: The conclusion of the reviewer was the same as the EEG report in 97% of the recordings. Three EEGs contained IEDs that were not detected based on the flagged epochs. Review time for the 100 EEGs was approximately 4 h, with half of the recordings taking <2 minutes to review. CONCLUSIONS: Our network can be used to reduce time spent on visual analysis in the clinic by 50-75 times with high reliability. SIGNIFICANCE: Given the large time reduction potential and high success rate, this algorithm can be used in the clinic to aid in visual analysis.


Assuntos
Aprendizado Profundo , Epilepsia , Humanos , Reprodutibilidade dos Testes , Epilepsia/diagnóstico , Eletroencefalografia , Redes Neurais de Computação
11.
Neurology ; 101(9): e940-e952, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37414565

RESUMO

BACKGROUND AND OBJECTIVES: Epileptiform activity and burst suppression are neurophysiology signatures reflective of severe brain injury after cardiac arrest. We aimed to delineate the evolution of coma neurophysiology feature ensembles associated with recovery from coma after cardiac arrest. METHODS: Adults in acute coma after cardiac arrest were included in a retrospective database involving 7 hospitals. The combination of 3 quantitative EEG features (burst suppression ratio [BSup], spike frequency [SpF], and Shannon entropy [En]) was used to define 5 distinct neurophysiology states: epileptiform high entropy (EHE: SpF ≥4 per minute and En ≥5); epileptiform low entropy (ELE: SpF ≥4 per minute and <5 En); nonepileptiform high entropy (NEHE: SpF <4 per minute and ≥5 En); nonepileptiform low entropy (NELE: SpF <4 per minute and <5 En), and burst suppression (BSup ≥50% and SpF <4 per minute). State transitions were measured at consecutive 6-hour blocks between 6 and 84 hours after return of spontaneous circulation. Good neurologic outcome was defined as best cerebral performance category 1-2 at 3-6 months. RESULTS: One thousand thirty-eight individuals were included (50,224 hours of EEG), and 373 (36%) had good outcome. Individuals with EHE state had a 29% rate of good outcome, while those with ELE had 11%. Transitions out of an EHE or BSup state to an NEHE state were associated with good outcome (45% and 20%, respectively). No individuals with ELE state lasting >15 hours had good recovery. DISCUSSION: Transition to high entropy states is associated with an increased likelihood of good outcome despite preceding epileptiform or burst suppression states. High entropy may reflect mechanisms of resilience to hypoxic-ischemic brain injury.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Adulto , Humanos , Coma/complicações , Estudos Retrospectivos , Neurofisiologia , Parada Cardíaca/complicações , Eletroencefalografia , Lesões Encefálicas/complicações
12.
Stem Cell Reports ; 18(8): 1686-1700, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419110

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Neurônios/fisiologia , Mutação de Sentido Incorreto , Mutação
13.
Clin Neurophysiol ; 152: 34-42, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269771

RESUMO

OBJECTIVE: Absences affect visual attention and eye movements variably. Here, we explore whether the dissimilarity of these symptoms during absences is reflected in differences in electroencephalographic (EEG) features, functional connectivity, and activation of the frontal eye field. METHODS: Pediatric patients with absences performed a computerized choice reaction time task, with simultaneous recording of EEG and eye-tracking. We quantified visual attention and eye movements with reaction times, response correctness, and EEG features. Finally, we studied brain networks involved in the generation and propagation of seizures. RESULTS: Ten pediatric patients had absences during the measurement. Five patients had preserved eye movements (preserved group) and five patients showed disrupted eye movements (unpreserved group) during seizures. Source reconstruction showed a stronger involvement of the right frontal eye field during absences in the unpreserved group than in the preserved group (dipole fraction 1.02% and 0.34%, respectively, p < 0.05). Graph analysis revealed different connection fractions of specific channels. CONCLUSIONS: The impairment of visual attention varies among patients with absences and is associated with differences in EEG features, network activation, and involvement of the right frontal eye field. SIGNIFICANCE: Assessing the visual attention of patients with absences can be usefully employed in clinical practice for tailored advice to the individual patient.


Assuntos
Epilepsia Tipo Ausência , Humanos , Criança , Epilepsia Tipo Ausência/diagnóstico , Convulsões , Encéfalo , Lobo Frontal , Eletroencefalografia
14.
PNAS Nexus ; 2(6): pgad188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383023

RESUMO

Theory suggest that networks of neurons may predict their input. Prediction may underlie most aspects of information processing and is believed to be involved in motor and cognitive control and decision-making. Retinal cells have been shown to be capable of predicting visual stimuli, and there is some evidence for prediction of input in the visual cortex and hippocampus. However, there is no proof that the ability to predict is a generic feature of neural networks. We investigated whether random in vitro neuronal networks can predict stimulation, and how prediction is related to short- and long-term memory. To answer these questions, we applied two different stimulation modalities. Focal electrical stimulation has been shown to induce long-term memory traces, whereas global optogenetic stimulation did not. We used mutual information to quantify how much activity recorded from these networks reduces the uncertainty of upcoming stimuli (prediction) or recent past stimuli (short-term memory). Cortical neural networks did predict future stimuli, with the majority of all predictive information provided by the immediate network response to the stimulus. Interestingly, prediction strongly depended on short-term memory of recent sensory inputs during focal as well as global stimulation. However, prediction required less short-term memory during focal stimulation. Furthermore, the dependency on short-term memory decreased during 20 h of focal stimulation, when long-term connectivity changes were induced. These changes are fundamental for long-term memory formation, suggesting that besides short-term memory the formation of long-term memory traces may play a role in efficient prediction.

15.
Resuscitation ; 189: 109830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182824

RESUMO

AIM: Rhythmic and periodic patterns (RPPs) on the electroencephalogram (EEG) in comatose patients after cardiac arrest have been associated with high case fatality rates. A good neurological outcome according to the Cerebral Performance Categories (CPC) has been reported in up to 10% of cases. Data on cognitive, emotional, and quality of life outcomes are lacking. We aimed to provide insight into these outcomes at one-year follow-up. METHODS: We assessed outcome of surviving comatose patients after cardiac arrest with RPPs included in the 'treatment of electroencephalographic status epilepticus after cardiopulmonary resuscitation' (TELSTAR) trial at one-year follow-up, including the CPC for functional neurological outcome, a cognitive assessment, the hospital anxiety and depression scale (HADS) for emotional outcomes, and the 36-item short-form health survey (SF-36) for quality of life. Cognitive impairment was defined as a score of more than 1.5 SD below the mean on ≥ 2 (sub)tests within a cognitive domain. RESULTS: Fourteen patients were included (median age 58 years, 21% female), of whom 13 had a cognitive impairment. Eleven of 14 were impaired in memory, 9/14 in executive functioning, and 7/14 in attention. The median scores on the HADS and SF-36 were all worse than expected. Based on the CPC alone, 8/14 had a good outcome (CPC 1-2). CONCLUSION: Nearly all cardiac arrest survivors with RPPs during the comatose state have cognitive impairments at one-year follow-up. The incidence of anxiety and depression symptoms seem relatively high and quality of life relatively poor, despite 'good' outcomes according to the CPC.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cognição , Coma/complicações , Eletroencefalografia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Qualidade de Vida , Sobreviventes
16.
PNAS Nexus ; 2(5): pgad119, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143862

RESUMO

Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy. This biophysical model includes intracortical, intrathalamic, and corticothalamic synaptic strengths, as well as synaptic time constants and axonal conduction delays. We used continuous EEG measurements from hundred comatose patients recorded during the first 48 h postcardiac arrest, 50 with a poor neurological outcome [cerebral performance category ( CPC = 5 ) ] and 50 with a good neurological outcome ( CPC = 1 ). We only included patients that developed (dis-)continuous EEG activity within 48 h postcardiac arrest. For patients with a good outcome, we observed an initial relative excitation in the corticothalamic loop and corticothalamic propagation that subsequently evolved towards values observed in healthy controls. For patients with a poor outcome, we observed an initial increase in the cortical excitation-inhibition ratio, increased relative inhibition in the corticothalamic loop, delayed corticothalamic propagation of neuronal activity, and severely prolonged synaptic time constants that did not return to physiological values. We conclude that the abnormal EEG evolution in patients with a poor neurological recovery after cardiac arrest may result from persistent and selective synaptic failure that includes corticothalamic circuitry and also delayed corticothalamic propagation.

17.
Commun Biol ; 6(1): 317, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966217

RESUMO

The electrographic manifestation of neural activity can reflect the relationship between the faster action potentials of individual neurons and the slower fluctuations of the local field potential (LFP). This relationship is typically examined in the temporal domain using the spike-triggered average. In this study, we add a spatial component to this relationship. Here we first derive a theoretical model of the spike-LFP relationship across a macroelectrode. This mathematical derivation showed a special symmetry in the spike-LFP relationship wherein a sinc function in the temporal domain predicts a sinc function in the spatial domain. We show that this theoretical result is observed in a real-world system by characterizing the spike-LFP relationship using microelectrode array (MEA) recordings of human focal seizures. To do this, we present a approach, termed the spatiotemporal spike-centered average (st-SCA), that allows for visualization of the spike-LFP relationship in both the temporal and spatial domains. We applied this method to 25 MEA recordings obtained from seven patients with pharmacoresistant focal epilepsy. Of the five patients with MEAs implanted in recruited territory, three exhibited spatiotemporal patterns consistent with a sinc function, and two exhibited spatiotemporal patterns resembling deep wells of excitation. These results suggest that in some cases characterization of the spike-LFP relationship in the temporal domain is sufficient to predict the underlying spatial pattern. Finally, we discuss the biological interpretation of these findings and propose that the sinc function may reflect the role of mid-range excitatory connections during seizure activity.


Assuntos
Neurônios , Convulsões , Humanos , Potenciais de Ação/fisiologia , Neurônios/fisiologia
18.
Neuroimage Clin ; 37: 103350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36801601

RESUMO

There is a need for reliable predictors in patients with moderate to severe traumatic brain injury to assist clinical decision making. We assess the ability of early continuous EEG monitoring at the intensive care unit (ICU) in patients with traumatic brain injury (TBI) to predict long term clinical outcome and evaluate its complementary value to current clinical standards. We performed continuous EEG measurements in patients with moderate to severe TBI during the first week of ICU admission. We assessed the Extended Glasgow Outcome Scale (GOSE) at 12 months, dichotomized into poor (GOSE 1-3) and good (GOSE 4-8) outcome. We extracted EEG spectral features, brain symmetry index, coherence, aperiodic exponent of the power spectrum, long range temporal correlations, and broken detailed balance. A random forest classifier using feature selection was trained to predict poor clinical outcome based on EEG features at 12, 24, 48, 72 and 96 h after trauma. We compared our predictor with the IMPACT score, the best available predictor, based on clinical, radiological and laboratory findings. In addition we created a combined model using EEG as well as the clinical, radiological and laboratory findings. We included hundred-seven patients. The best prediction model using EEG parameters was found at 72 h after trauma with an AUC of 0.82 (0.69-0.92), specificity of 0.83 (0.67-0.99) and sensitivity of 0.74 (0.63-0.93). The IMPACT score predicted poor outcome with an AUC of 0.81 (0.62-0.93), sensitivity of 0.86 (0.74-0.96) and specificity of 0.70 (0.43-0.83). A model using EEG and clinical, radiological and laboratory parameters resulted in a better prediction of poor outcome (p < 0.001) with an AUC of 0.89 (0.72-0.99), sensitivity of 0.83 (0.62-0.93) and specificity of 0.85 (0.75-1.00). EEG features have potential use for predicting clinical outcome and decision making in patients with moderate to severe TBI and provide complementary information to current clinical standards.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Escala de Resultado de Glasgow , Unidades de Terapia Intensiva , Eletroencefalografia/métodos
19.
Clin EEG Neurosci ; 54(5): 512-521, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36189613

RESUMO

Attention is an important aspect of human brain function and often affected in neurological disorders. Objective assessment of attention may assist in patient care, both for diagnostics and prognostication. We present a compact test using a combination of a choice reaction time task, eye-tracking and EEG for assessment of visual attention in the clinic. The system quantifies reaction time, parameters of eye movements (i.e. saccade metrics and fixations) and event related potentials (ERPs) in a single and fast (15 min) experimental design. We present pilot data from controls, patients with mild traumatic brain injury and epilepsy, to illustrate its potential use in assessing attention in neurological patients. Reaction times and eye metrics such as fixation duration, saccade duration and latency show significant differences (p < .05) between neurological patients and controls. Late ERP components (200-800 ms) can be detected in the central line channels for all subjects, but no significant group differences could be found in the peak latencies and mean amplitudes. Our system has potential to assess key features of visual attention in the clinic. Pilot data show significant differences in reaction times and eye metrics between controls and patients, illustrating its promising use for diagnostics and prognostication.


Assuntos
Eletroencefalografia , Doenças do Sistema Nervoso , Humanos , Eletroencefalografia/métodos , Potenciais Evocados , Movimentos Oculares , Movimentos Sacádicos , Tempo de Reação
20.
Trials ; 23(1): 324, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436940

RESUMO

BACKGROUND: Postictal phenomena as delirium, headache, nausea, myalgia, and anterograde and retrograde amnesia are common manifestations after seizures induced by electroconvulsive therapy (ECT). Comparable postictal phenomena also contribute to the burden of patients with epilepsy. The pathophysiology of postictal phenomena is poorly understood and effective treatments are not available. Recently, seizure-induced cyclooxygenase (COX)-mediated postictal vasoconstriction, accompanied by cerebral hypoperfusion and hypoxia, has been identified as a candidate mechanism in experimentally induced seizures in rats. Vasodilatory treatment with acetaminophen or calcium antagonists reduced postictal hypoxia and postictal symptoms. The aim of this clinical trial is to study the effects of acetaminophen and nimodipine on postictal phenomena after ECT-induced seizures in patients suffering major depressive disorder. We hypothesize that (1) acetaminophen and nimodipine will reduce postictal electroencephalographic (EEG) phenomena, (2) acetaminophen and nimodipine will reduce magnetic resonance imaging (MRI) measures of postictal cerebral hypoperfusion, (3) acetaminophen and nimodipine will reduce clinical postictal phenomena, and (4) postictal phenomena will correlate with measures of postictal hypoperfusion. METHODS: We propose a prospective, three-condition cross-over design trial with randomized condition allocation, open-label treatment, and blinded end-point evaluation (PROBE design). Thirty-three patients (age > 17 years) suffering from a depressive episode treated with ECT will be included. Randomly and alternately, single doses of nimodipine (60 mg), acetaminophen (1000 mg), or water will be given two hours prior to each ECT session with a maximum of twelve sessions per patient. The primary outcome measure is 'postictal EEG recovery time', expressed and quantified as an adapted version of the temporal brain symmetry index, yielding a time constant for the duration of the postictal state on EEG. Secondary outcome measures include postictal cerebral perfusion, measured by arterial spin labelling MRI, and the postictal clinical 'time to orientation'. DISCUSSION: With this clinical trial, we will systematically study postictal EEG, MRI and clinical phenomena after ECT-induced seizures and will test the effects of vasodilatory treatment intending to reduce postictal symptoms. If an effect is established, this will provide a novel treatment of postictal symptoms in ECT patients. Ultimately, these findings may be generalized to patients with epilepsy. TRIAL REGISTRATION: Inclusion in SYNAPSE started in December 2019. Prospective trial registration number is NCT04028596 on the international clinical trial register on July 22, 2019.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Epilepsia , Acetaminofen , Animais , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia/efeitos adversos , Eletroencefalografia , Humanos , Hipóxia , Nimodipina , Estudos Prospectivos , Ratos , Convulsões , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA