Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 151(2): 163-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17375082

RESUMO

The breast cancer resistance protein (also termed ABCG2) is an ATP-binding cassette transporter, which mediates the extrusion of toxic compounds from the cell, and which was originally identified in relation to the development of multidrug resistance of cancer cells. ABCG2 interacts with a range of substrates including clinical drugs but also substances such as sterols, porphyrins and a variety of dietary compounds. Physiological functions of ABCG2 at both cellular and systemic levels are reviewed. For example, ABCG2 expression in erythrocytes may function in porphyrin homeostasis. In addition, ABCG2 expression at apical membranes of cells such as hepatocytes, enterocytes, endothelial and syncytiotrophoblast cells may correlate to protective barrier or secretory functions against environmental or clinically administered substances. ABCG2 also appears influential in the inter-patient variation and generally poor oral bioavailability of certain chemotherapeutic drugs such as topotecan. As this often precludes an oral drug administration strategy, genotypic and environmental factors altering ABCG2 expression and activity are considered. Finally, clinical modulation of ABCG2 activity is discussed. Some of the more recent strategies include co-administered modulating agents, hammerhead ribozymes or antisense oligonucleotides, and with specificity in cell targeting, these may be used to reduce drug resistance and increase drug bioavailability to improve the profile of chemotherapeutic efficacy versus toxicity. While many such strategies remain in relative infancy at present, increased knowledge of modulators of ABCG2 could hold the key to novel approaches in medical treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/tendências , Tetra-Hidroisoquinolinas/uso terapêutico , Topotecan/uso terapêutico
2.
Biochem Soc Trans ; 33(Pt 5): 1008-11, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16246033

RESUMO

The movement of drugs across biological membranes is mediated by two major classes of membrane transporters. Primary-active, ABC (ATP-binding cassette) multidrug transporters are dependent on ATP-binding/hydrolysis, whereas secondary-active multidrug transporters are coupled to the proton (or sodium)-motive force that exists across the plasma membrane. Recent work on LmrA, an ABC multidrug transporter in Lactococcus lactis, suggests that primary- and secondary-active multidrug transporters share functional and structural features. Some of these similarities and their implications for the mechanism of transport by ABC multidrug transporters will be discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antiporters/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo
3.
Appl Environ Microbiol ; 68(11): 5374-8, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12406727

RESUMO

The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N'-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the alpha- and beta-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.


Assuntos
Adenosina Trifosfatases/metabolismo , Humulus/química , Lactobacillus/efeitos dos fármacos , Adenosina Trifosfatases/antagonistas & inibidores , Western Blotting , Inibidores Enzimáticos/farmacologia , Lactobacillus/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Extratos Vegetais/farmacologia
4.
Biochemistry ; 40(39): 11876-86, 2001 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11570888

RESUMO

Bacterial LmrA, an integral membrane protein of Lactococcus lactis, confers multidrug resistance by mediating active extrusion of a wide variety of structurally unrelated compounds. Similar to its eucaryotic homologue P-gp, this protein is a member of the ATP-binding cassette (ABC) superfamily. Different predictive models, based on hydropathy profiles, have been proposed to describe the structure of the ABC transporters in general and of LmrA in particular. We used polarized attenuated total reflection infrared spectroscopy, combined with limited proteolysis, to investigate the secondary structure and the orientation of the transmembrane segments of LmrA. We bring the first experimental evidence that the membrane-embedded domain of LmrA is composed of transmembrane-oriented alpha-helices. Furthermore, a new approach was developed in order to provide information about membrane domain dynamics. Monitoring the infrared linear dichroism spectra in the course of (1)H/(2)H exchange allowed to focus the recording of exchange rates on the membrane-embedded region of the protein only. This approach revealed an unusual structural dynamics, indicating high flexibility in this antibiotic binding and transport region.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hidrogênio , Hidrólise , Relação Estrutura-Atividade
5.
J Bacteriol ; 183(18): 5371-5, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11514522

RESUMO

Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos/farmacologia , Cerveja/microbiologia , Microbiologia de Alimentos , Lactobacillus/efeitos dos fármacos , Rosales/química , Transportadores de Cassetes de Ligação de ATP/genética , Ácidos/metabolismo , Benzimidazóis/metabolismo , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Etídio/metabolismo , Genes Bacterianos , Lactobacillus/genética , Lactobacillus/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lipossomos/metabolismo
6.
J Bacteriol ; 183(15): 4659-63, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11443103

RESUMO

Two systems for the uptake of inorganic phosphate (P(i)) in Escherichia coli, PitA and Pst, have been described. A revertant of a pitA pstS double mutant that could grow on P(i) was isolated. We demonstrate that the expression of a new P(i) transporter, PitB, is activated in this strain by a gene amplification event.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Fosfatos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , DNA Bacteriano , Escherichia coli/genética , Escherichia coli/metabolismo , Amplificação de Genes , Genes Bacterianos , Dados de Sequência Molecular , Mutagênese , Proteínas de Ligação a Fosfato
7.
Mol Membr Biol ; 18(1): 97-103, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11396617

RESUMO

Multidrug transporters mediate the extrusion of structurally unrelated drugs from prokaryotic and eukaryotic cells. As a result of this efflux activity, the cytoplasmic drug concentration in the cell is lowered to subtoxic levels and, hence, cells become multidrug resistant. The activity of multidrug transporters interferes with the drug-based control of tumours and infectious pathogenic microorganisms. There is an urgent need to understand the structure-function relationships in multidrug transporters that underlie their drug specificity and transport mechanism. Knowledge about the architecture of drug and modulator binding sites and the link between energy-generating and drug translocating functions of multidrug transporters may allow one to rationally design new drugs that can poison or circumvent the activity of these transport proteins. Furthermore, if one is to inhibit multidrug transporters in human cells, one should know more about their physiological substrates and functions. This review will summarize important new insights into the role that multidrug transporters in general, and P-glycoprotein and its bacterial homologue LmrA in particular, play in the physiology of the cell. In addition, the molecular basis of drug transport by these proteins will be discussed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Animais , Sítios de Ligação , Transporte Biológico , Humanos , Modelos Biológicos , Relação Estrutura-Atividade
8.
Res Microbiol ; 152(3-4): 365-74, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11421284

RESUMO

The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insights into the mechanism(s) by which ATP hydrolysis is coupled to drug transport in bacterial LmrA and its human homolog P-glycoprotein. In addition, the relevance of these insights for other ABC transporters will be discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Humanos , Relação Estrutura-Atividade
9.
Semin Cell Dev Biol ; 12(3): 239-45, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11428916

RESUMO

Due to their ability to extrude structurally dissimilar cytotoxic drugs out of the cell, multidrug transporters are able to reduce the cytoplasmic drug concentration, and, hence, are able to confer drug resistance on human cancer cells and pathogenic microorganisms. This review will focus on the molecular properties of two bacterial multidrug transporters, the ATP-binding cassette transporter LmrA and the proton motive force-dependent major facilitator superfamily transporter LmrP, which each represent a major class of multidrug transport proteins encountered in pro- and eukaryotic cells. In spite of the structural differences between LmrA and LmrP, the molecular bases of their drug transport activity may turn out to be more similar than might currently appear.


Assuntos
Proteínas de Transporte/fisiologia , Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Transporte Biológico Ativo , Proteínas de Transporte/metabolismo , Células Eucarióticas/química , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Células Procarióticas/química
10.
J Mol Microbiol Biotechnol ; 3(2): 185-92, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11321572

RESUMO

ATP-binding cassette multidrug transporters are probably present in all living cells, and are able to export a variety of structurally unrelated compounds at the expense of ATP hydrolysis. The elevated expression of these proteins in multidrug resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. Insights into the structural elements in drug molecules and transport proteins that are required for this interaction are now beginning to emerge. However, much remains to be learned about the nature and number of drug binding sites in the transporters, and the mechanism(s) by which ATP hydrolysis is coupled to changes in affinity and/or accessibility of drug binding sites. This review summarizes recent advances in answering these questions for the human multidrug resistance P-glycoprotein and its prokaryotic homolog LmrA. The relevance of these findings for other ATP-binding cassette transporters will be discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Difosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Especificidade por Substrato
11.
Microbiol Mol Biol Rev ; 64(4): 672-93, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11104814

RESUMO

One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Antiporters/metabolismo , Proteínas de Bactérias/classificação , Transporte Biológico , Sequência Conservada , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Modelos Moleculares , Biologia Molecular , Dados de Sequência Molecular
12.
J Bacteriol ; 182(22): 6525-8, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11053402

RESUMO

Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids and is different from extrusion and modification, which have been described previously.


Assuntos
Ácido Cólico/metabolismo , Lactobacillus/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio
13.
J Bacteriol ; 182(18): 5196-201, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10960105

RESUMO

The cholate-resistant Lactococcus lactis strain C41-2, derived from wild-type L. lactis MG1363 through selection for growth on cholate-containing medium, displayed a reduced accumulation of cholate due to an enhanced active efflux. However, L. lactis C41-2 was not cross resistant to deoxycholate or cationic drugs, such as ethidium and rhodamine 6G, which are typical substrates of the multidrug transporters LmrP and LmrA in L. lactis MG1363. The cholate efflux activity in L. lactis C41-2 was not affected by the presence of valinomycin plus nigericin, which dissipated the proton motive force. In contrast, cholate efflux in L. lactis C41-2 was inhibited by ortho-vanadate, an inhibitor of P-type ATPases and ATP-binding cassette transporters. Besides ATP-dependent drug extrusion by LmrA, two other ATP-dependent efflux activities have previously been detected in L. lactis, one for the artificial pH probe 2',7'-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein (BCECF) and the other for the artificial pH probe N-(fluorescein thio-ureanyl)-glutamate (FTUG). Surprisingly, the efflux rate of BCECF, but not that of FTUG, was significantly enhanced in L. lactis C41-2. Further experiments with L. lactis C41-2 cells and inside out membrane vesicles revealed that cholate and BCECF inhibit the transport of each other. These data demonstrate the role of an ATP-dependent multispecific organic anion transporter in cholate resistance in L. lactis.


Assuntos
Proteínas de Transporte/metabolismo , Colatos/metabolismo , Lactococcus lactis/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions , Colatos/farmacologia , Resistência Microbiana a Medicamentos , Metabolismo Energético , Glucose/metabolismo , Lactococcus lactis/efeitos dos fármacos , Vanadatos/farmacologia
14.
EMBO J ; 19(11): 2503-14, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10835349

RESUMO

The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated, and by which ATP hydrolysis is coupled to drug transport, are not known. Based on equilibrium binding experiments, photoaffinity labeling and drug transport assays, we conclude that homodimeric LmrA mediates drug transport by an alternating two-site transport (two-cylinder engine) mechanism. The transporter possesses two drug-binding sites: a transport-competent site on the inner membrane surface and a drug-release site on the outer membrane surface. The interconversion of these two sites, driven by the hydrolysis of ATP, occurs via a catalytic transition state intermediate in which the drug transport site is occluded. The mechanism proposed for LmrA may also be relevant for P-glycoprotein and other ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias/fisiologia , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Benzimidazóis/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Bloqueadores dos Canais de Cálcio/farmacologia , Catálise , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dimerização , Isoquinolinas/farmacologia , Lactococcus lactis , Lipossomos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Marcadores de Fotoafinidade , Estrutura Terciária de Proteína , Quinazolinas/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Vanadatos/farmacologia , Vimblastina/metabolismo
16.
Biochemistry (Mosc) ; 65(3): 332-40, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10739476

RESUMO

Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal (EBPR), in particular in lab-scale systems fed with acetate or acetate plus glucose as the sole carbon and energy sources. By applying 13C-NMR, previous models concerning anaerobic carbon metabolism have been advanced and the role of glycogen in providing reducing equivalents in EBPR is definitely demonstrated. The role of the citric acid cycle in supplying reducing equivalents for the conversion of acetyl-CoA into poly-beta-hydroxybutyrate and poly-beta-hydroxyvalerate has been discussed. An incomplete citric acid cycle has been proposed to provide a small part of the reducing equivalents. Polyphosphate:AMP phosphotransferase and polyphosphatase were readily detectable in EBPR sludge fed with acetate plus glucose, but polyphosphate kinase remained undetected. In a lab-scale EBPR system, fed for several months with only acetate as carbon source, a Rhodocyclus-like bacterium (R6) was highly enriched and is therefore probably responsible for EBPR in systems fed with acetate only. This R6-type bacterium was however also present in other EBPR sludges (but to a lesser extent), and may therefore play an important role in EBPR in general. This organism accumulates polyhydroxyalkanoates anaerobically and polyP under aerobic conditions. Unlike members of the genus Rhodocyclus, bacterium R6 cannot grow phototrophically. Therefore a provisional new genus Candidatus and species Accumulibacter phosphatis was proposed.


Assuntos
Acinetobacter/metabolismo , Fósforo/metabolismo , Polifosfatos/metabolismo , Acinetobacter/fisiologia , Aerobiose , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Biológicos , Polifosfatos/química , Esgotos
17.
Pharmacol Ther ; 85(3): 245-9, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10739879

RESUMO

The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding cassette superfamily and a bacterial homolog of the human multidrug resistance P-glycoprotein. Another multidrug transporter in Lactococcus lactis, LmrP, belongs to the major facilitator superfamily, and is one example of a rapidly expanding group of secondary multidrug transporters in microorganisms. Thus, LmrA and LmrP are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by the same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA represent an intriguing area of research.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias , Proteínas de Transporte/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Lactococcus lactis/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Sítios de Ligação , Transporte Biológico Ativo , Relação Estrutura-Atividade
18.
J Biol Chem ; 275(15): 10962-7, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10753896

RESUMO

LmrA, a membrane protein of Lactococcus lactis, extrudes amphiphilic compounds from the inner leaflet of the cytoplasmic membrane, using energy derived from ATP hydrolysis. A combination of total reflection Fourier transform infrared spectroscopy, (2)H/H exchange, and fluorescence quenching experiments was used to investigate the effect of nucleotide binding and/or hydrolysis on the structure of LmrA reconstituted into proteoliposomes. These measurements allowed us to describe secondary structure changes of LmrA during the catalytic cycle. The structure of LmrA is enriched in beta-sheet after ATP binding, and the protein recovers its initial secondary structure after ATP hydrolysis, when P(i) has been released. (2)H/H exchange and fluorescence quenching studies indicate that the protein undergoes two distinct tertiary structure changes during the hydrolysis process. Indeed, the protein alone is poorly accessible to the aqueous medium but adopts a more accessible conformation when ATP hydrolysis takes place. After ATP hydrolysis, but when P(i) is still associated with the protein, the accessibility is intermediate between these two states.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fluorescência , Hidrólise , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano
19.
Biochim Biophys Acta ; 1461(2): 201-6, 1999 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-10581356

RESUMO

The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding cassette (ABC) superfamily and a bacterial homolog of the human multidrug resistance P-glycoprotein. Another multidrug transporter in L. lactis, LmrP, belongs to the major facilitator superfamily, and is one example of a rapidly expanding group of secondary multidrug transporters in microorganisms. Thus, LmrA and LmrP are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by the same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA represent an intriguing area of research.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias , Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Resistência Microbiana a Medicamentos , Proteínas de Membrana/metabolismo , Proteolipídeos , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Biochemistry ; 38(49): 16298-306, 1999 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-10587454

RESUMO

Lactococcus lactis possesses an ATP-binding cassette transporter, LmrA, which is a homolog of the mammalian multidrug resistance (MDR) P-glycoprotein, and is able to transport a broad range of structurally unrelated amphiphilic drugs. A histidine tag was introduced at the N-terminus of LmrA to facilitate purification by nickel affinity chromatography. The histidine-tagged protein was overexpressed in L. lactis using a novel protein expression system for cytotoxic proteins based on the tightly regulated, nisin-inducible nisA promoter. This system allowed us to get functional overexpression of LmrA up to a level of 30% of total membrane protein. For reconstitution, LmrA was solubilized with dodecylmaltoside, purified by nickel-chelate affinity chromatography, and reconstituted in dodecylmaltoside-destabilized, preformed liposomes prepared from L. lactis phospholipids. The detergent was removed by adsorption onto polystyrene beads. The LmrA protein was reconstituted in a functional form, and mediated the ATP-dependent transport of the fluorescent substrate Hoechst-33342 into the proteoliposomes. Interestingly, reconstituted LmrA also catalyzed the ATP-dependent transport of fluorescent phosphatidylethanolamine, but not of fluorescent phosphatidylcholine. These data demonstrate that LmrA activity is independent of accessory proteins and support the notion that LmrA may be involved in the transport of specific lipids or lipid-linked precursors in L. lactis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias , Resistência a Múltiplos Medicamentos , Corantes Fluorescentes/metabolismo , Lactococcus lactis/química , Lactococcus lactis/fisiologia , Bicamadas Lipídicas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Fosfolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Benzimidazóis/metabolismo , Transporte Biológico/genética , Etídio/metabolismo , Histidina/genética , Lactococcus lactis/genética , Lipossomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/genética , Proteolipídeos/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA