Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948843

RESUMO

The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.

2.
Elife ; 122024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319699

RESUMO

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.


In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity ­ that is, exactly which neurons are connected via synapses ­ remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from 'postsynaptic' to 'presynaptic' neurons ­ from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.


Assuntos
Vírus da Raiva , Animais , Camundongos , Vírus da Raiva/genética , Neuroanatomia , Neurônios , Análise de Sequência de RNA , RNA
3.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
4.
Nature ; 624(7991): 317-332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092916

RESUMO

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Conjuntos de Dados como Assunto , Hibridização in Situ Fluorescente , Vias Neurais , Neurônios/classificação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , RNA/análise , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma/genética
5.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37034735

RESUMO

The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.

6.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36993334

RESUMO

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.

7.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38168182

RESUMO

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

8.
Proc Natl Acad Sci U S A ; 119(18): e2115638119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476521

RESUMO

A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication­associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity. We utilized muscle stem cells (MuSCs) as a model of quiescent stem cells and find that the replication stress response protein, ATR (Ataxia Telangiectasia and Rad3-Related), is abundant and active in quiescent but not activated MuSCs. Concurrently, MuSCs display punctate RPA (replication protein A) and R-loop foci, both key triggers for ATR activation. To discern the role of ATR in MuSCs, we generated MuSC-specific ATR conditional knockout (ATRcKO) mice. Surprisingly, ATR ablation results in increased MuSC quiescence exit. Phosphoproteomic analysis of ATRcKO MuSCs reveals enrichment of phosphorylated cyclin F, a key component of the Skp1­Cul1­F-box protein (SCF) ubiquitin ligase complex and regulator of key cell-cycle transition factors, such as the E2F family of transcription factors. Knocking down cyclin F or inhibiting the SCF complex results in E2F1 accumulation and in MuSCs exiting quiescence, similar to ATR-deficient MuSCs. The loss of ATR could be counteracted by inhibiting casein kinase 2 (CK2), the kinase responsible for phosphorylating cyclin F. We propose a model in which MuSCs express cell-cycle progression factors but ATR, in coordination with the cyclin F­SCF complex, represses premature stem cell quiescence exit via ubiquitin­proteasome degradation of these factors.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Ciclinas/genética , Ciclinas/metabolismo , Células-Tronco/metabolismo
9.
Nature ; 598(7879): 195-199, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616073

RESUMO

Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene expression at isoform resolution, making possible the identification of specific isoform markers for different cell types. Used in conjunction with spatial RNA capture and gene-tagging methods, this enables the inference of spatially resolved isoform expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples of isoform specificity in cell types-including isoform shifts between cell types that are masked in gene-level analysis-as well as examples of transcriptional regulation. Additionally, we show that isoform specificity helps to refine cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging multiple measurements provides a comprehensive atlas of transcription in the mouse primary motor cortex that improves on the possibilities offered by any single technology.


Assuntos
Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Transcriptoma , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Análise de Sequência
10.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473054

RESUMO

Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of TC neurons in the primate dLGN: magnocellular (M) neurons, parvocellular (P) neurons, and two types of koniocellular (K) neurons. Despite extensively documented morphological and physiological differences between M and P neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. Likewise, the dominant feature of TC neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to the observed differences in morphology and cortical projection targets. Finally, alignment of transcriptome profiles across species highlights expanded diversity of GABAergic neurons in primate versus mouse dLGN and homologous types of TC neurons in primates that are distinct from TC neurons in mouse.


Assuntos
Núcleo Celular/genética , Corpos Geniculados/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Macaca , Camundongos , RNA-Seq , Análise de Célula Única , Tálamo/metabolismo , Vias Visuais/metabolismo
11.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Neuron ; 109(9): 1449-1464.e13, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33789083

RESUMO

Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.


Assuntos
Encéfalo/citologia , Neurônios/classificação , Neurônios/citologia , Análise de Célula Única/métodos , Animais , Conjuntos de Dados como Assunto , Dependovirus , Humanos , Camundongos , Camundongos Transgênicos
13.
Neuron ; 109(3): 545-559.e8, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290731

RESUMO

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.


Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Animais , Encéfalo/citologia , Conectoma , Rede de Modo Padrão/citologia , Imageamento por Ressonância Magnética , Camundongos , Rede Nervosa/citologia , Neurônios/citologia
14.
Elife ; 92020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372656

RESUMO

The advancement of single-cell RNA-sequencing technologies has led to an explosion of cell type definitions across multiple organs and organisms. While standards for data and metadata intake are arising, organization of cell types has largely been left to individual investigators, resulting in widely varying nomenclature and limited alignment between taxonomies. To facilitate cross-dataset comparison, the Allen Institute created the common cell type nomenclature (CCN) for matching and tracking cell types across studies that is qualitatively similar to gene transcript management across different genome builds. The CCN can be readily applied to new or established taxonomies and was applied herein to diverse cell type datasets derived from multiple quantifiable modalities. The CCN facilitates assigning accurate yet flexible cell type names in the mammalian cortex as a step toward community-wide efforts to organize multi-source, data-driven information related to cell type taxonomies from any organism.


Assuntos
Células/classificação , Lobo Temporal/citologia , Terminologia como Assunto , Humanos
15.
Science ; 366(6466): 734-738, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699935

RESUMO

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3' untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.


Assuntos
Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo , Fator de Transcrição PAX3/genética , Poliadenilação , Regiões 3' não Traduzidas , Animais , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Mutantes , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
16.
Cell Stem Cell ; 24(2): 213-225, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735649

RESUMO

Stem cells can reside in a state of reversible growth arrest, or quiescence, for prolonged periods of time. Although quiescence has long been viewed as a dormant, low-activity state, increasing evidence suggests that quiescence represents states of poised potential and active restraint, as stem cells "idle" in anticipation of activation, proliferation, and differentiation. Improved understanding of quiescent stem cell dynamics is leading to novel approaches to enhance maintenance and repair of aged or diseased tissues. In this Review, we discuss recent advances in our understanding of stem cell quiescence and techniques enabling more refined analyses of quiescence in vivo.


Assuntos
Ciclo Celular , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Animais , Humanos , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Brain Behav Immun ; 70: 118-130, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454023

RESUMO

Acute hypothermia treatment (HT) is the only clinically established intervention following neonatal hypoxic-ischemic brain injury. However, almost half of all cooled infants still die or suffer from long-lasting neurological impairments. Regenerative therapies, such as mesenchymal stem cells (MSC) appear promising as adjuvant therapy. In the present study, we hypothesized that HT combined with delayed MSC therapy results in augmented protection, improving long-term neurological outcome. Postnatal day 9 (P9) C57BL/6 mice were exposed to hypoxia-ischemia followed by 4 h HT. Murine bone marrow-derived MSC (1 × 106 cells/animal) were administered intranasally at P12. Cytokine and growth factor levels were assessed by ELISA and Luminex® multiplex assay 24 h following MSC delivery. One week after HI, tissue injury and neuroinflammatory responses were determined by immunohistochemistry and western blot. Long-term motor-cognitive outcome was assessed 5 weeks post injury. MSC responses to the brains' environment were evaluated by gene expression analysis in MSC, co-cultured with brain homogenates isolated at P12. Both, MSC and HT improved motor deficits, while cognitive function could only be restored by MSC. Compared to each single therapy, combined treatment led to increased long-lasting motor-cognitive deficits and exacerbated brain injury, accompanied by enhanced endothelial activation and peripheral immune cell infiltration. MSC co-cultured with brain extracts of HT-treated animals revealed increased pro-inflammatory cytokine and decreased growth factor expression. In vivo protein analysis showed higher pro-inflammatory cytokine levels after combined treatment compared to single therapy. Furthermore, HI-induced increase in growth factors was normalized to control levels by HT and MSC single therapy, while the combination induced a further decline below control levels. Our results suggest that alteration of the brains' microenvironment by acute HT modulates MSC function resulting in a pro-inflammatory environment combined with alteration of the homeostatic growth factor milieu in the neonatal hypoxic-ischemic brain. This study delineates potential unexpected side effects of cell-based therapies as add-on therapy for acute hypothermia treatment.


Assuntos
Hipotermia/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Células-Tronco Mesenquimais/fisiologia , Administração Intranasal , Animais , Animais Recém-Nascidos/fisiologia , Comportamento Animal , Encéfalo , Lesões Encefálicas , Proliferação de Células , Modelos Animais de Doenças , Humanos , Hipotermia Induzida/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
18.
Stem Cells Dev ; 27(5): 313-325, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310519

RESUMO

Subarachnoid hemorrhage (SAH) represents a major health problem in Western society due to high mortality and morbidity, and the relative young age of patients. Currently, efficacious therapeutic options are very limited. Mesenchymal stem cell (MSC) administration has been shown to improve functional outcome and lesion size in experimental models of stroke and neonatal hypoxic-ischemic brain injury. Here, we studied the therapeutic potential of intranasally administered bone marrow-derived MSCs relatively late postinsult using a rat endovascular puncture model for SAH. Six days after induction of SAH, rats were treated with MSCs or vehicle through nasal administration. Intranasal MSC treatment significantly improved sensorimotor and mechanosensory function at 21 days after SAH. Gray and white matter loss was significantly reduced by MSC treatment and the number of NeuN+ neurons around the lesion increased due to MSC treatment. Moreover, intranasal MSC administration led to a sharp decrease in SAH-induced activation of astrocytes and microglia/macrophages in the lesioned hemisphere, especially of M2-like (CD206+) microglia/macrophages. Interestingly, MSC administration also decreased SAH-induced depression-like behavior in association with a restoration of tyrosine hydroxylase expression in the substantia nigra and striatum. We show here for the first time that intranasal MSC administration reverses the devastating consequences of SAH, including regeneration of the cerebral lesion, functional recovery, and treatment of comorbid depression-like behavior.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Cavidade Nasal , Hemorragia Subaracnóidea/terapia , Animais , Células Cultivadas , Corpo Estriado/citologia , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Cell Rep ; 21(7): 1994-2004, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141228

RESUMO

Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche. Although these cells are still quiescent, biochemical changes certainly occur during the isolation process. Here, we analyze the transcriptome of MuSCs in vivo utilizing MuSC-specific labeling of RNA. Notably, labeling transcripts during the isolation procedure revealed very active transcription of specific subsets of genes. However, using the transcription inhibitor α-amanitin, we show that the ex vivo transcriptome remains largely reflective of the in vivo transcriptome. Together, these data provide perspective on the molecular regulation of the quiescent state at the transcriptional level, demonstrate the utility of these tools for probing transcriptional dynamics in vivo, and provide an invaluable resource for understanding stem cell state transitions.


Assuntos
Perfilação da Expressão Gênica/métodos , Mioblastos/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia
20.
Proc Natl Acad Sci U S A ; 114(43): E8996-E9005, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073096

RESUMO

Tissue regeneration depends on the timely activation of adult stem cells. In skeletal muscle, the adult stem cells maintain a quiescent state and proliferate upon injury. We show that muscle stem cells (MuSCs) use direct translational repression to maintain the quiescent state. High-resolution single-molecule and single-cell analyses demonstrate that quiescent MuSCs express high levels of Myogenic Differentiation 1 (MyoD) transcript in vivo, whereas MyoD protein is absent. RNA pulldowns and costainings show that MyoD mRNA interacts with Staufen1, a potent regulator of mRNA localization, translation, and stability. Staufen1 prevents MyoD translation through its interaction with the MyoD 3'-UTR. MuSCs from Staufen1 heterozygous (Staufen1+/-) mice have increased MyoD protein expression, exit quiescence, and begin proliferating. Conversely, blocking MyoD translation maintains the quiescent phenotype. Collectively, our data show that MuSCs express MyoD mRNA and actively repress its translation to remain quiescent yet primed for activation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteína MyoD/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Camundongos , Células Musculares/fisiologia , Proteína MyoD/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA