Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 58(11): 2873-85, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17630294

RESUMO

cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.


Assuntos
Senescência Celular/genética , Dianthus/efeitos dos fármacos , Proteínas de Plantas/genética , Sacarose/farmacologia , Regulação para Cima/efeitos dos fármacos , Apoptose/genética , Análise por Conglomerados , Dianthus/citologia , Dianthus/genética , Etilenos/metabolismo , Etilenos/farmacologia , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Tiossulfatos/farmacologia
2.
Tree Physiol ; 26(10): 1297-313, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16815832

RESUMO

Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about 1500 expressed sequence tags (ESTs) from buds of cold-treated Scots pine seedlings. In a climate room providing long daily photoperiods and high temperatures, seedlings did not develop freezing tolerance, whereas seedlings in a climate room set to provide declining temperatures and day lengths developed moderate freezing tolerance. Control seedlings grown outside under field conditions developed full freezing tolerance. Differences in physiological behavior of the different seedling groups, combined with molecular analysis, allowed identification of a large group of genes, expression of which changed during the development of freezing tolerance. Transcript abundance of several of these genes was highly correlated with freezing tolerance in seedlings differing in provenance, field location or age, making them excellent candidate marker genes for molecular tests for freezing tolerance.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Pinus sylvestris/genética , Proteínas de Plantas/genética , Árvores/genética , Clima , Temperatura Baixa , Europa (Continente) , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Estações do Ano , Plântula/genética , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA