Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 131: 103570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734176

RESUMO

Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula , DNA , Mamíferos/genética
2.
Front Genet ; 12: 738230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659358

RESUMO

The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.

3.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34548335

RESUMO

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Assuntos
Proteína BRCA1/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/fisiologia , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Neoplasias Mamárias Animais/patologia , Reparo de DNA por Recombinação , Animais , Apoptose , Proteína BRCA2/fisiologia , Proliferação de Células , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
4.
Nat Commun ; 11(1): 571, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996674

RESUMO

Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer's Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Arginina/metabolismo , Ligação Proteica , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Sequência de Aminoácidos , Animais , Arginina/química , Progressão da Doença , Guanidina/metabolismo , Proteínas de Choque Térmico HSP90 , Humanos , Espectrometria de Massas , Chaperonas Moleculares , Agregados Proteicos , Domínios Proteicos , Dobramento de Proteína , Proteoma , Ratos , Análise de Sequência de Proteína , Proteínas tau/química , Proteínas tau/genética
5.
Oncotarget ; 10(65): 6997-7009, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31857853

RESUMO

SESTRINs (SESN1-3) are proteins encoded by an evolutionarily conserved gene family that plays an important role in the regulation of cell viability and metabolism in response to stress. Many of the effects of SESTRINs are mediated by negative and positive regulation of mechanistic target of rapamycin kinase complexes 1 and 2 (mTORC1 and mTORC2), respectively, that are often deregulated in human cancers where they support cell growth, proliferation, and cell viability. Besides their effects on regulation of mTORC1/2, SESTRINs also control the accumulation of reactive oxygen species, cell death, and mitophagy. SESN1 and SESN2 are transcriptional targets of tumor suppressor protein p53 and may mediate tumor suppressor activities of p53. Therefore, we conducted studies based on a mouse lung cancer model and human lung adenocarcinoma A549 cells to evaluate the potential impact of SESN1 and SESN2 on lung carcinogenesis. While we observed that expression of SESN1 and SESN2 is often decreased in human tumors, inactivation of Sesn2 in mice positively regulates tumor growth through a mechanism associated with activation of AKT, while knockout of Sesn1 has no additional impact on carcinogenesis in Sesn2-deficient mice. However, inactivation of SESN1 and/or SESN2 in A549 cells accelerates cell proliferation and imparts resistance to cell death in response to glucose starvation. We propose that despite their contribution to early tumor growth, SESTRINs might suppress late stages of carcinogenesis through inhibition of cell proliferation or activation of cell death in conditions of nutrient deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA