Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2200-2210, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38817965

RESUMO

Breast cancer is a multifaceted disease and a leading cause of cancer morbidity and mortality in females across the globe. In 2020 alone, 2.3 million women were diagnosed and 685,000 died of breast cancer worldwide. With the number of diagnoses projected to increase to 3 million per year by 2040 it is essential that new methods of detection and disease stratification are sought to decrease this global cancer burden. Although significant improvements have been made in breast cancer diagnosis and treatment, the prognosis of breast cancer remains poor in some patient groups (i.e. triple negative breast cancer), necessitating research into better patient stratification, diagnosis and drug discovery. The UK Biobank, a comprehensive biomedical and epidemiological database with a wide variety of multiomics data (genomics, proteomics, metabolomics) offers huge potential to uncover groundbreaking discoveries in breast cancer research leading to improved patient stratification. Combining genomic, proteomic, and metabolic profiles of breast cancer in combination with histological classification, can aid treatment decisions through accurate diagnosis and prognosis prediction of tumor behaviour. Here, we systematically reviewed PubMed publications reporting the analysis of UK Biobank data in breast cancer research. Our analysis of UK Biobank studies in the past five years identified 125 publications, of which 76 focussed on genomic data analysis. Interestingly, only two studies reported the analysis of metabolomics and proteomics data, with none performing multiomics analysis of breast cancer. A meta-analysis of the 76 publications identified 2870 genetic variants associated with breast cancer across 445 genes. Subtype analysis revealed differential genetic alteration in 13 of the 445 genes and the identification of 59 well-established breast cancer genes. in differential pathways. Pathway interaction analyses illuminated their involvement in general cancer biomolecular pathways (e.g. DNA damage repair, Gene expression). While our meta-analysis only measured genetic differences in breast cancer due to current usage of UK Biobank data, minimal multi-omics analyses have been performed and the potential for harnessing multi-omics strategies within the UK Biobank cohort holds promise for unravelling the biological signatures of distinct breast cancer subtypes further in the future.

2.
BMC Cancer ; 22(1): 874, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948941

RESUMO

Breast cancer, comprising of several sub-phenotypes, is a leading cause of female cancer-related mortality in the UK and accounts for 15% of all cancer cases. Chemoresistant sub phenotypes of breast cancer remain a particular challenge. However, the rapidly-growing availability of clinical datasets, presents the scope to underpin a data-driven precision medicine-based approach exploring new targets for diagnostic and therapeutic interventions.We report the application of a bioinformatics-based approach probing the expression and prognostic role of Karyopherin-2 alpha (KPNA2) in breast cancer prognosis. Aberrant KPNA2 overexpression is directly correlated with aggressive tumour phenotypes and poor patient survival outcomes. We examined the existing clinical data available on a range of commonly occurring mutations of KPNA2 and their correlation with patient survival.Our analysis of clinical gene expression datasets show that KPNA2 is frequently amplified in breast cancer, with differences in expression levels observed as a function of patient age and clinicopathologic parameters. We also found that aberrant KPNA2 overexpression is directly correlated with poor patient prognosis, warranting further investigation of KPNA2 as an actionable target for patient stratification or the design of novel chemotherapy agents.In the era of big data, the wealth of datasets available in the public domain can be used to underpin proof of concept studies evaluating the biomolecular pathways implicated in chemotherapy resistance in breast cancer.


Assuntos
Neoplasias , alfa Carioferinas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Feminino , Humanos , Mutação , Prognóstico , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
3.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954325

RESUMO

Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined analysis of which has gained recent popularity. Given the emerging evidence indicating the role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following identification of altered features, we performed pathway enrichment analysis to measure key metabolic changes occurring in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-derived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology and metabolomics studies for the comprehensive characterisation of cell lines with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can be used to identify key oncometabolites and inform the rationale for the design of novel drugs or chemotherapy combinations.

4.
Altern Lab Anim ; 50(4): 282-292, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35765262

RESUMO

Colorectal cancer (CRC) is a global cause of cancer-related mortality driven by genetic and environmental factors which influence therapeutic outcomes. The emergence of next-generation sequencing technologies enables the rapid and extensive collection and curation of genetic data for each cancer type into clinical gene expression biobanks. We report the application of bioinformatics tools for investigating the expression patterns and prognostic significance of three genes that are commonly dysregulated in colon cancer: adenomatous polyposis coli (APC); B-Raf proto-oncogene (BRAF); and Kirsten rat sarcoma viral oncogene homologue (KRAS). Through the use of bioinformatics tools, we show the patterns of APC, BRAF and KRAS genetic alterations and their role in patient prognosis. Our results show mutation types, the frequency of mutations, tumour anatomical location and differential expression patterns for APC, BRAF and KRAS for colorectal tumour and matched healthy tissue. The prognostic value of APC, BRAF and KRAS genetic alterations was investigated as a function of their expression levels in CRC. In the era of precision medicine, with significant advancements in biobanking and data curation, there is significant scope to use existing clinical data sets for evaluating the role of mutational drivers in carcinogenesis. This approach offers the potential for studying combinations of less well-known genes and the discovery of novel biomarkers, or for studying the association between various effector proteins and pathways.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Bancos de Espécimes Biológicos , Biologia Computacional , Expressão Gênica , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA