Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1170357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251411

RESUMO

Background: Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods: Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results: By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions: This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.


Assuntos
Anticorpos Biespecíficos , Albumina Sérica , Animais , Bovinos , Humanos , Albumina Sérica/metabolismo , Fragmentos Fab das Imunoglobulinas , Epitopos , Técnicas de Visualização da Superfície Celular
2.
Sci Rep ; 12(1): 15766, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130996

RESUMO

The primary host response to Staphylococcus aureus infection occurs via complement. Complement is an elegant evolutionarily conserved system, playing essential roles in early defences by working in concert with immune cells to survey, label and destroy microbial intruders and coordinate inflammation. Currently the exact mechanisms employed by S. aureus to manipulate and evade complement is not clear and is hindered by the lack of accurate molecular tools that can report on complement deposition on the bacterial surface. Current gold-standard detection methods employ labelled complement-specific antibodies and flow cytometry to determine complement deposited on bacteria. These methods are restricted by virtue of the expression of the S. aureus immunoglobulin binding proteins, Protein A and Sbi. In this study we describe the use of a novel antibody-independent C3 probe derived from the staphylococcal Sbi protein, specifically Sbi-IV domain. Here we show that biotin-labelled Sbi-IV interacts specifically with deposited C3 products on the staphylococcal surface and thus can be used to measure complement fixation on wild-type cells expressing a full repertoire of immune evasion proteins. Lastly, our data indicates that genetically diverse S. aureus strains restrict complement to different degrees suggesting that complement evasion is a variable virulence trait among S. aureus isolates.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias , Biotina/metabolismo , Complemento C3/metabolismo , Humanos , Ligação Proteica , Staphylococcus aureus/metabolismo
3.
Front Immunol ; 13: 892234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693766

RESUMO

Staphylococcus aureus is an opportunistic pathogen that is able to thwart an effective host immune response by producing a range of immune evasion molecules, including S. aureus binder of IgG (Sbi) which interacts directly with the central complement component C3, its fragments and associated regulators. Recently we reported the first structure of a disulfide-linked human C3d17C dimer and highlighted its potential role in modulating B-cell activation. Here we present an X-ray crystal structure of a disulfide-linked human C3d17C dimer, which undergoes a structurally stabilising N-terminal 3D domain swap when in complex with Sbi. These structural studies, in combination with circular dichroism and fluorescence spectroscopic analyses, reveal the mechanism underpinning this unique helix swap event and could explain the origins of a previously discovered N-terminally truncated C3dg dimer isolated from rat serum. Overall, our study unveils a novel staphylococcal complement evasion mechanism which enables the pathogen to harness the ability of dimeric C3d to modulate B-cell activation.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Animais , Proteínas de Transporte/metabolismo , Dissulfetos/metabolismo , Ratos , Staphylococcus/metabolismo
4.
MAbs ; 14(1): 2076295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634719

RESUMO

Cysteine-rich knob domains can be isolated from the ultralong heavy-chain complementarity-determining region (CDR) 3, which are unique to a subset of bovine antibodies, to create antibody fragments of ~4 kDa. Advantageously, the N- and C- termini of these small binding domains are in close proximity, and we propose that this may offer a practical route to engineer extrinsic binding specificity into proteins. To test this, we transplanted knob domains into various loops of rat serum albumin, targeting sites that were distal to the interface with the neonatal Fc receptor. Using knob domains raised against the clinically validated drug target complement component C5, we produced potent inhibitors, which exhibit an extended plasma half-life in vivo via attenuated renal clearance and neonatal Fc receptor-mediated avoidance of lysosomal catabolism. The same approach was also used to modify a Camelid VHH, targeting a framework loop situated at the opposing end of the domain to the CDRs, to produce a small, single-chain bispecific antibody and a dual inhibitor of Complement C3 and C5. This study presents new protein inhibitors of the complement cascade and demonstrates a broadly applicable method to engineer target specificity within polypeptide chains, using bovine knob domains.


Assuntos
Anticorpos Biespecíficos , Regiões Determinantes de Complementaridade , Animais , Anticorpos Biespecíficos/química , Bovinos , Ativação do Complemento , Regiões Determinantes de Complementaridade/química , Domínios Proteicos , Ratos
5.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34406751

RESUMO

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Assuntos
Regiões Determinantes de Complementaridade/química , Fragmentos de Imunoglobulinas/química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Animais , Bovinos , Fragmentos de Imunoglobulinas/sangue , Fragmentos de Imunoglobulinas/farmacologia , Masculino , Modelos Moleculares , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/farmacocinética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ratos Sprague-Dawley , Técnicas de Síntese em Fase Sólida , Espectrometria de Massas em Tandem , Termodinâmica
6.
J Immunol ; 207(6): 1641-1651, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380648

RESUMO

Thrombin activation of C5 connects thrombosis to inflammation. Complement research in whole blood ex vivo necessitates anticoagulation, which potentially interferes with the inflammatory modulation by thrombin. We challenged the concept of thrombin as an activator of native C5 by analyzing complement activation and C5 cleavage in human whole blood anticoagulated with Gly-Pro-Arg-Pro (GPRP), a peptide targeting fibrin polymerization downstream of thrombin, allowing complete endogenous thrombin generation. GPRP dose-dependently inhibited coagulation but allowed for platelet activation in accordance with thrombin generation. Spontaneous and bacterial-induced complement activation by Escherichia coli and Staphylococcus aureus, analyzed at the level of C3 and C5, were similar in blood anticoagulated with GPRP and the thrombin inhibitor lepirudin. In the GPRP model, endogenous thrombin, even at supra-physiologic concentrations, did not cleave native C5, despite efficiently cleaving commercially sourced purified C5 protein, both in buffer and when added to C5-deficient serum. In normal serum, only exogenously added, commercially sourced C5 was cleaved, whereas the native plasma C5 remained intact. Crucially, affinity-purified C5, eluted under mild conditions using an MgCl2 solution, was not cleaved by thrombin. Acidification of plasma to pH ≤ 6.8 by hydrochloric or lactic acid induced a C5 antigenic change, nonreversible by pH neutralization, that permitted cleavage by thrombin. Circular dichroism on purified C5 confirmed the structural change during acidification. Thus, we propose that pH-induced conformational change allows thrombin-mediated cleavage of C5 and that, contrary to previous reports, thrombin does not cleave plasma C5 in its native form, suggesting that thrombin cleavage of C5 may be restricted to certain pathophysiological conditions.


Assuntos
Complemento C5 , Trombina , Coagulação Sanguínea , Ativação do Complemento , Fibrina , Humanos
7.
Front Immunol ; 12: 714055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434196

RESUMO

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


Assuntos
Complemento C3d/química , Modelos Moleculares , Multimerização Proteica , Complemento C3/química , Complemento C3/imunologia , Complemento C3d/imunologia , Humanos , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteólise , Proteínas Recombinantes/química , Relação Estrutura-Atividade
8.
Elife ; 102021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570492

RESUMO

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Complemento C5/antagonistas & inibidores , Descoberta de Drogas , Peptídeos/química , Peptídeos/farmacologia , Animais , Bovinos , Complemento C5/química , Complemento C5/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos
9.
Biochem J ; 477(18): 3599-3612, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32869839

RESUMO

Among the major challenges in the development of biopharmaceuticals are structural heterogeneity and aggregation. The development of a successful therapeutic monoclonal antibody (mAb) requires both a highly active and also stable molecule. Whilst a range of experimental (biophysical) approaches exist to track changes in stability of proteins, routine prediction of stability remains challenging. The fluorescence red edge excitation shift (REES) phenomenon is sensitive to a range of changes in protein structure. Based on recent work, we have found that quantifying the REES effect is extremely sensitive to changes in protein conformational state and dynamics. Given the extreme sensitivity, potentially this tool could provide a 'fingerprint' of the structure and stability of a protein. Such a tool would be useful in the discovery and development of biopharamceuticals and so we have explored our hypothesis with a panel of therapeutic mAbs. We demonstrate that the quantified REES data show remarkable sensitivity, being able to discern between structurally identical antibodies and showing sensitivity to unfolding and aggregation. The approach works across a broad concentration range (µg-mg/ml) and is highly consistent. We show that the approach can be applied alongside traditional characterisation testing within the context of a forced degradation study (FDS). Most importantly, we demonstrate the approach is able to predict the stability of mAbs both in the short (hours), medium (days) and long-term (months). The quantified REES data will find immediate use in the biopharmaceutical industry in quality assurance, formulation and development. The approach benefits from low technical complexity, is rapid and uses instrumentation which exists in most biochemistry laboratories without modification.


Assuntos
Anticorpos Monoclonais/química , Conformação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência
10.
PLoS Biol ; 18(9): e3000821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886672

RESUMO

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Assuntos
Anticorpos/química , Dissulfetos/isolamento & purificação , Domínios de Imunoglobulina , Fragmentos de Peptídeos/isolamento & purificação , Domínios e Motivos de Interação entre Proteínas , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Formação de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Linfócitos B/fisiologia , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Dissulfetos/química , Dissulfetos/imunologia , Mapeamento de Epitopos/métodos , Humanos , Imunização , Domínios de Imunoglobulina/genética , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Domínios e Motivos de Interação entre Proteínas/genética
11.
PLoS One ; 15(7): e0235335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628695

RESUMO

Diabetes is associated with a dramatic mortality rate due to its vascular complications. Chronic hyperglycemia in diabetes leads to enhanced glycation of erythrocytes and oxidative stress. Even though erythrocytes play a determining role in vascular complications, very little is known about how erythrocyte structure and functionality can be affected by glycation. Our objective was to decipher the impact of glycation on erythrocyte structure, oxidative stress parameters and capacity to interact with cultured human endothelial cells. In vitro glycated erythrocytes were prepared following incubation in the presence of different concentrations of glucose. To get insight into the in vivo relevance of our results, we compared these data to those obtained using red blood cells purified from diabetics or non-diabetics. We measured erythrocyte deformability, susceptibility to hemolysis, reactive oxygen species production and oxidative damage accumulation. Altered structures, redox status and oxidative modifications were increased in glycated erythrocytes. These modifications were associated with reduced antioxidant defence mediated by enzymatic activity. Enhanced erythrocyte phagocytosis by endothelial cells was observed when cultured with glycated erythrocytes, which was associated with increased levels of phosphatidylserine-likely as a result of an eryptosis phenomenon triggered by the hyperglycemic treatment. Most types of oxidative damage identified in in vitro glycated erythrocytes were also observed in red blood cells isolated from diabetics. These results bring new insights into the impact of glycation on erythrocyte structure, oxidative damage and their capacity to interact with endothelial cells, with a possible relevance to diabetes.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Eritrócitos/patologia , Produtos Finais de Glicação Avançada/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicemia/metabolismo , Linhagem Celular , Técnicas de Cocultura , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais , Eriptose , Deformação Eritrocítica , Eritrócitos/metabolismo , Hemoglobinas Glicadas/análise , Voluntários Saudáveis , Hemólise , Humanos , Estresse Oxidativo , Cultura Primária de Células
12.
Methods Mol Biol ; 1855: 161-175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30426417

RESUMO

Carbohydrate modification of proteins adds complexity and diversity to the proteome. However, undesired carbohydrate modifications also occur in the form of glycation, which have been implicated in diseases such as diabetes, Alzheimer's disease, autoimmune diseases, and cancer. The analysis of glycated proteins is challenging due to their complexity and variability. Numerous analytical techniques have been developed that require expensive specialized equipment and complex data analysis. In this chapter, we describe two easy-to-use electrophoresis-based methods that will enable researchers to detect, identify, and analyze these posttranslational modifications. This new cost-effective methodology will aid the detection of unwanted glycation products in processed foods and may lead to new diagnostics and therapeutics for age-related chronic diseases.


Assuntos
Ácidos Borônicos/química , Eletroforese em Gel de Poliacrilamida/métodos , Glicoproteínas/isolamento & purificação , Doença de Alzheimer/diagnóstico , Diabetes Mellitus/diagnóstico , Eletroforese em Gel de Poliacrilamida/economia , Humanos , Processamento de Proteína Pós-Traducional , Proteômica/métodos
13.
Eur J Med Chem ; 158: 25-33, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30199703

RESUMO

The trans-sialidase protein expressed by Trypanosoma cruzi is an important enzyme in the life cycle of this human pathogenic parasite and is considered a promising target for the development of new drug treatments against Chagas' disease. Here we describe α-amino phosphonates as a novel class of inhibitor of T. cruzi trans-sialidase. Molecular modelling studies were initially used to predict the active-site binding affinities for a series of amino phosphonates, which were subsequently synthesised and their IC50s determined in vitro. The measured inhibitory activities show some correlation with the predictions from molecular modelling, with 1-napthyl derivatives found to be the most potent inhibitors having IC50s in the low micromolar range. Interestingly, kinetic analysis of the mode of inhibition demonstrated that the α-aminophosphonates tested here operate in a non-competitive manner.


Assuntos
Doença de Chagas/tratamento farmacológico , Glicoproteínas/antagonistas & inibidores , Neuraminidase/antagonistas & inibidores , Organofosfonatos/química , Organofosfonatos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Aminação , Doença de Chagas/parasitologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
14.
J Biol Chem ; 293(36): 14112-14121, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30030376

RESUMO

Complement component C5 is the target of the mAb eculizumab and is the focus of a sustained drug discovery effort to prevent complement-induced inflammation in a range of autoimmune diseases. The immune evasion protein OmCI binds to and potently inactivates C5; this tight-binding interaction can be exploited to affinity-purify C5 protein from serum, offering a vastly simplified protocol compared with existing methods. However, breaking the high-affinity interaction requires conditions that risk denaturing or activating C5. We performed structure-guided in silico mutagenesis to identify prospective OmCI residues that contribute significantly to the binding affinity. We tested our predictions in vitro, using site-directed mutagenesis, and characterized mutants using a range of biophysical techniques, as well as functional assays. Our biophysical analyses suggest that the C5-OmCI interaction is complex with potential for multiple binding modes. We present single mutations that lower the affinity of OmCI for C5 and combinations of mutations that significantly decrease or entirely abrogate formation of the complex. The affinity-attenuated forms of OmCI are suitable for affinity purification and allow elution under mild conditions that are nondenaturing or activating to C5. We present the rational design, biophysical characterization, and experimental validation of affinity-reduced forms of OmCI as tool reagents to enable the affinity purification of C5.


Assuntos
Complemento C5/isolamento & purificação , Descoberta de Drogas , Animais , Sítios de Ligação , Desenho de Fármacos , Humanos , Evasão da Resposta Imune , Mutagênese Sítio-Dirigida , Ligação Proteica , Purificação por Afinidade em Tandem
15.
Front Immunol ; 9: 3139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687332

RESUMO

Co-ligation of the B cell antigen receptor with complement receptor 2 on B-cells via a C3d-opsonised antigen complex significantly lowers the threshold required for B cell activation. Consequently, fusions of antigens with C3d polymers have shown great potential in vaccine design. However, these linear arrays of C3d multimers do not mimic the natural opsonisation of antigens with C3d. Here we investigate the potential of using the unique complement activating characteristics of Staphylococcal immune-evasion protein Sbi to develop a pro-vaccine approach that spontaneously coats antigens with C3 degradation products in a natural way. We show that Sbi rapidly triggers the alternative complement pathway through recruitment of complement regulators, forming tripartite complexes that act as competitive antagonists of factor H, resulting in enhanced complement consumption. These functional results are corroborated by the structure of the complement activating Sbi-III-IV:C3d:FHR-1 complex. Finally, we demonstrate that Sbi, fused with Mycobacterium tuberculosis antigen Ag85b, causes efficient opsonisation with C3 fragments, thereby enhancing the immune response significantly beyond that of Ag85b alone, providing proof of concept for our pro-vaccine approach.


Assuntos
Adjuvantes Imunológicos , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus/imunologia , Aciltransferases/genética , Aciltransferases/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/genética , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Modelos Animais de Doenças , Imunização , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes de Fusão/imunologia , Infecções Estafilocócicas/prevenção & controle , Relação Estrutura-Atividade
17.
Sci Rep ; 7: 46568, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436442

RESUMO

Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica "cage", rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This "ensilication" method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the "cold chain" problem for biological materials, in particular for vaccines.


Assuntos
Simulação por Computador , Proteínas Recombinantes de Fusão/química , Animais , Liofilização , Temperatura Alta , Humanos , Desnaturação Proteica , Estabilidade Proteica
18.
Sci Rep ; 7: 42874, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230058

RESUMO

Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer's Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Regulação da Expressão Gênica , Humanos , Hiperglicemia/metabolismo , Estresse Oxidativo
19.
FEBS J ; 283(12): 2272-84, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27028374

RESUMO

To understand complex molecular interactions, it is necessary to account for molecular flexibility and the available equilibrium of conformational states. Only a small number of experimental approaches can access such information. Potentially steady-state red edge excitation shift (REES) spectroscopy can act as a qualitative metric of changes to the protein free energy landscape (FEL) and the equilibrium of conformational states. First, we validate this hypothesis using a single Trp-containing protein, NF-κB essential modulator (NEMO). We provide detailed evidence from chemical denaturation studies, macromolecular crowding studies, and the first report of the pressure dependence of the REES effect. Combination of these data demonstrate that the REES effect can report on the 'ruggedness' of the FEL and we present a phenomenological model, based on realistic physical interpretations, for fitting steady-state REES data to allow quantification of this aspect of the REES effect. We test the conceptual framework we have developed by correlating findings from NEMO ligand-binding studies with the REES data in a range of NEMO-ligand binary complexes. Our findings shed light on the nature of the interaction between NEMO and poly-ubiquitin, suggesting that NEMO is differentially regulated by poly-ubiquitin chain length and that this regulation occurs via a modulation of the available equilibrium of conformational states, rather than gross structural change. This study therefore demonstrates the potential of REES as a powerful tool for tackling contemporary issues in structural biology and biophysics and elucidates novel information on the structure-function relationship of NEMO and key interaction partners.


Assuntos
Quinase I-kappa B/química , NF-kappa B/química , Poliubiquitina/química , Conformação Proteica , Sítios de Ligação , Quinase I-kappa B/genética , Ligantes , NF-kappa B/genética , Poliubiquitina/genética , Ligação Proteica , Espectrometria de Fluorescência
20.
PLoS One ; 10(12): e0144937, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26681201

RESUMO

Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called "nutritional virulence" strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.


Assuntos
Photorhabdus/patogenicidade , Animais , Biofilmes , Infecções por Enterobacteriaceae/microbiologia , Humanos , Manduca/microbiologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Photorhabdus/genética , Photorhabdus/fisiologia , RNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA