Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7977): 171-178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648867

RESUMO

Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.


Assuntos
Aciltransferases , Triglicerídeos , Animais , Humanos , Camundongos , Aciltransferases/metabolismo , Coenzima A/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Escherichia coli/metabolismo , Homeostase , Triglicerídeos/biossíntese , Metabolismo Energético , Nutrientes/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo
2.
Science ; 377(6614): 1533-1537, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173861

RESUMO

Protein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme. Its ablation resulted in viable mice in which the cytoskeleton was composed of immature actin molecules across all tissues. However, in skeletal muscle, the lengths of sarcomeric actin filaments were shorter, muscle function was decreased, and centralized nuclei, a common hallmark of myopathies, progressively accumulated. Thus, ACTMAP encodes the missing factor required for the synthesis of mature actin and regulates specific actin-dependent traits in vivo.


Assuntos
Actinas , Metionina , Peptídeo Hidrolases , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/biossíntese , Actinas/genética , Animais , Endopeptidases , Metionina/genética , Metionina/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
3.
Science ; 376(6595): eabn6020, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35482892

RESUMO

The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.


Assuntos
Carboxipeptidases , Proteínas Associadas aos Microtúbulos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Tirosina , Animais , Carboxipeptidases/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Tubulina (Proteína)/química , Tirosina/química
4.
Nat Commun ; 11(1): 1128, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111832

RESUMO

The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.


Assuntos
Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Complexo de Golgi/metabolismo , Haploidia , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética
5.
Cell Host Microbe ; 23(5): 636-643.e5, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29681460

RESUMO

Human type A Enteroviruses (EV-As) cause diseases ranging from hand-foot-and-mouth disease to poliomyelitis-like disease. Although cellular receptors are identified for some EV-As, they remain elusive for the majority of EV-As. We identify the cell surface molecule KREMEN1 as an entry receptor for coxsackievirus A10 (CV-A10). Whereas loss of KREMEN1 renders cells resistant to CV-A10 infection, KREMEN1 overexpression enhances CV-A10 binding to the cell surface and increases susceptibility to infection, indicating that KREMEN1 is a rate-limiting factor for CV-A10 infection. Furthermore, the extracellular domain of KREMEN1 binds CV-A10 and functions as a neutralizing agent during infection. Kremen-deficient mice are resistant to CV-A10-induced lethal paralysis, emphasizing the relevance of Kremen for infection in vivo. KREMEN1 is also essential for infection by a phylogenetic and pathogenic related group of EV-As. Collectively these findings highlight the importance of KREMEN1 for these emerging pathogens and its potential as an antiviral therapeutic target.


Assuntos
Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Antígenos de Superfície , Linhagem Celular , Linhagem Celular Tumoral , Enterovirus/patogenicidade , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Feminino , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Doença de Mão, Pé e Boca/virologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Mutagênese , Filogenia , Domínios Proteicos
6.
Nature ; 541(7637): 412-416, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077878

RESUMO

Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.


Assuntos
Citoplasma/virologia , Genoma Viral , Fatores Celulares Derivados do Hospedeiro/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Picornaviridae/genética , Picornaviridae/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Internalização do Vírus , Animais , Autofagia , Transporte Biológico , Linhagem Celular , Citoplasma/genética , Endossomos/metabolismo , Feminino , Galectinas/genética , Galectinas/metabolismo , Fatores Celulares Derivados do Hospedeiro/deficiência , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Masculino , Camundongos , Mutação , Fenótipo , Fosfolipases A2 Independentes de Cálcio/deficiência , Fosfolipases A2 Independentes de Cálcio/genética , Supressão Genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
7.
PLoS One ; 8(4): e61923, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637930

RESUMO

AIMS: In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. METHODS AND RESULTS: PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. CONCLUSION: PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.


Assuntos
Circulação Colateral/fisiologia , Membro Posterior/irrigação sanguínea , Monócitos/fisiologia , Receptor PAR-1/fisiologia , Receptor PAR-2/fisiologia , Animais , Arteríolas/fisiologia , Diferenciação Celular , Modelos Animais de Doenças , Artéria Femoral , Isquemia , Lectinas Tipo C/imunologia , Ligadura , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Receptor PAR-1/deficiência , Receptores de Superfície Celular/imunologia
8.
Haematologica ; 98(1): 153-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22801966

RESUMO

Tissue factor activation (decryption) has been proposed to be dependent on the cysteine 186-cysteine 209 allosteric disulfide in the tissue factor extracellular domain. Tissue factor procoagulant activity is under the control of protein disulfide isomerase-dependent modulation and nitrosylation of this disulfide. Human tissue factor disulfide mutants have been proposed as a model for encrypted tissue factor, but poor expression of these mutants hampers research into tissue factor decryption. We, therefore, investigated whether mouse tissue factor cysteine 186-cysteine 209 disulfide bond mutants form a better suited model for tissue factor decryption. Stable mouse wild-type tissue factor, tissue factor(C190A), tissue factor(C213A) and tissue factor(C190/213A) disulfide mutant-expressing baby hamster kidney cells with equal levels of surface tissue factor were established. Tissue factor coagulant activity on these cells was determined using an active factor Xa-dependent chromogenic assay. The effect of nitrosylation on tissue factor function was also assessed. A tissue factor(C190/213A) mutant exerted marginal procoagulant activity, also after addition of supraphysiological concentration of factor VIIa. Tissue factor(C190A) and tissue factor(C213A) mutants showed reduced activity and the presence of tissue factor dimers. Nitrosylation of wild-type tissue factor cells decreased procoagulant function, an effect which was reversed by incubation with bacitracin, an inhibitor of protein disulfide isomerase, suggesting that this isomerase promotes de-nitrosylation of tissue factor. Mouse tissue factor procoagulant function is dependent on the Cys190-Cys213 disulfide bond and is modulated by nitrosylation. The murine model of disulfide-mutated tissue factor is more suitable for studying tissue factor decryption than are human tissue factor mutants.


Assuntos
Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Regulação Alostérica , Animais , Linhagem Celular , Cricetinae , Cisteína/sangue , Dissulfetos/sangue , Humanos , Camundongos
11.
Front Biosci (Schol Ed) ; 3(4): 1500-10, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622285

RESUMO

Tissue factor (TF), originally discovered to initiate coagulation, is more recently recognized to be involved in other biological processes, such as migration and anti-apoptosis. TF-mediated signaling regulates gene expression and protein synthesis, leading to alterations in cellular behavior. The proteolytic activity of factor VIIa (FVIIa), beta-1 integrin interaction and protease-activated receptor (PAR) activation are some of the key events involved in TF signaling. Post-translational modifications of TF may regulate signaling but this remains elusive. In vivo studies have established that TF signaling severely contributes to processes like angiogenesis, cancer growth and inflammation. This review focuses on the mechanism underlying TF-mediated intracellular signaling with its related physiological and mainly pathological consequences.


Assuntos
Apoptose/fisiologia , Movimento Celular/fisiologia , Fator VIIa/metabolismo , Integrina beta1/metabolismo , Processamento de Proteína Pós-Traducional/genética , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais/fisiologia , Tromboplastina/metabolismo , Cálcio/metabolismo , Humanos , Modelos Biológicos , Neovascularização Patológica/metabolismo
12.
Stem Cell Res ; 2(2): 108-12, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19383416

RESUMO

Development involves an interplay between various cell types from their birth to their disappearance by differentiation, migration, or death. Analyzing these interactions provides insights into their roles during the formation of a new organism. As a study tool for these interactions, we have created a model based on embryoid bodies (EBs) generated from mouse embryonic stem (mES) cells, which can be used to visualize the differentiation of mES cells into specific cell types while at the same time allowing controlled removal of this same cell population using an enzyme-prodrug approach. Cell-specific expression of Cre induces a switch of EGFP expression to LacZ. Furthermore, it leads to the expression of nitroreductase (NTR), which in combination with the prodrug CB1954 induces apoptosis. Here, we validate this model by showing expression of LacZ and NTR after Cre-mediated recombination. Additionally we show, as an example, that we can target the endothelial cells in EBs using the Tie-2 promoter driving Cre. Ablating Cre-expressing cells by adding CB1954 to the culture led to an abrogated vascular formation. This system can easily be adapted to determine the fate and interaction of many different cell types provided that there is a cell-type-specific promoter available.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Genes Transgênicos Suicidas/genética , Modelos Biológicos , Animais , Apoptose/efeitos dos fármacos , Aziridinas/administração & dosagem , Comunicação Celular , Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Integrases/genética , Óperon Lac , Camundongos , Nitrorredutases/genética , Regiões Promotoras Genéticas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA