RESUMO
The expression of the hepatic progenitor cell marker keratin 19 (K19) in canine hepatocellular carcinomas is linked with a poor prognosis. To better understand this aggressive behaviour, K19-positive hepatocellular carcinomas (n=5) and K19-negative hepatocellular adenomas (n=6) were immunohistochemically stained for proteins involved in malignant tumour development. The K19-positive carcinomas showed marked positivity for platelet-derived growth factor receptor alpha polypeptide (PDGFRα), laminin, integrin beta-1/CD29, B-cell-specific Moloney murine leukaemia virus Integration site 1, glypican-3 (GPC-3) and prominin-1/CD133, in contrast with K19-negative hepatocellular adenomas. Conversely, neurofibromatosis type 2 was highly expressed in the hepatocellular adenomas in contrast with the hepatocellular carcinomas. This expression pattern is clearly in line with the observed aggressive behaviour. The presence of the malignancy markers PDGFRα and GPC-3 might make it possible to develop specific strategies to intervene in tumour growth and to devise novel serological tests and personalised treatment methods for canine hepatocellular carcinomas.
RESUMO
BACKGROUND: The availability of non-rodent animal models for human cirrhosis is limited. We investigated whether privately-owned dogs (Canis familiaris) are potential model animals for liver disease focusing on regenerative pathways. Several forms of canine hepatitis were examined: Acute Hepatitis (AH), Chronic Hepatitis (CH), Lobular Dissecting Hepatitis (LDH, a specific form of micronodulair cirrhosis), and Cirrhosis (CIRR). Canine cirrhotic samples were compared to human liver samples from cirrhotic stages of alcoholic liver disease (hALC) and chronic hepatitis C infection (hHC). RESULTS: Canine specific mRNA expression of the regenerative hepatocyte growth factor (HGF) signaling pathway and relevant down-stream pathways were measured by semi-quantitative PCR and Western blot (STAT3, PKB, ERK1/2, and p38-MAPK). In all canine groups, levels of c-MET mRNA (proto-oncogenic receptor for HGF) were significantly decreased (p < 0.05). Surprisingly, ERK1/2 and p38-MAPK were increased in CH and LDH. In the human liver samples Western blotting indicated a high homology of down-stream pathways between different etiologies (hALC and hHC). Similarly activated pathways were found in CIRR, hALC, and hHC. CONCLUSION: In canine hepatitis and cirrhosis the major regenerative downstream pathways were activated. Signaling pathways are similarly activated in human cirrhotic liver samples, irrespective of the differences in etiology in the human samples (alcohol abuse and HCV-infection). Therefore, canine hepatitis and cirrhosis could be an important clinical model to evaluate novel interventions prior to human clinical trials.
RESUMO
BACKGROUND: The role of copper accumulation in the onset of hepatitis is still unclear. Therefore, we investigated a spontaneous disease model of primary copper-toxicosis in Doberman pinschers so to gain insights into the pathophysiology of copper toxicosis, namely on genes involved in copper metabolism and reactive oxygen species (ROS) defences. RESULTS: We used quantitative real-time PCR to determine differentially expressed genes within a target panel, investigating different groups ranging from copper-associated subclinical hepatitis (CASH) to a clinical chronic hepatitis with high hepatic copper concentrations (Doberman hepatitis, DH). Furthermore, a non-copper associated subclinical hepatitis group (N-CASH) with normal hepatic copper concentrations was added as a control. Most mRNA levels of proteins involved in copper binding, transport, and excretion were around control values in the N-CASH and CASH group. In contrast, many of these (including ATP7A, ATP7B, ceruloplasmin, and metallothionein) were significantly reduced in the DH group. Measurements on defences against oxidative stress showed a decrease in gene-expression of superoxide dismutase 1 and catalase in both groups with high copper. Moreover, the anti-oxidative glutathione molecule was clearly reduced in the DH group. CONCLUSION: In the DH group the expression of gene products involved in copper efflux was significantly reduced, which might explain the high hepatic copper levels in this disease. ROS defences were most likely impaired in the CASH and DH group. Overall, this study describes a new variant of primary copper toxicosis and could provide a molecular basis for equating future treatments in dog and in man.
RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. RESULTS: Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. CONCLUSIONS: We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC.