Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 12(8): 8467-8476, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30011370

RESUMO

The catalytic performance and optical properties of bimetallic nanoparticles critically depend on the atomic distribution of the two metals in the nanoparticles. However, at elevated temperatures, during light-induced heating, or during catalysis, atomic redistribution can occur. Measuring such metal redistribution in situ is challenging, and a single experimental technique does not suffice. Furthermore, the availability of a well-defined nanoparticle system has been an obstacle for a systematic investigation of the key factors governing the atomic redistribution. In this study, we follow metal redistribution in precisely tunable, single-crystalline Au-core, Ag-shell nanorods in situ, both at a single particle and an ensemble-averaged level, by combining in situ transmission electron spectroscopy with in situ extended X-ray absorption fine structure validated by ex situ measurements. We show that the kinetics of atomic redistribution in Au-Ag nanoparticles depend on the metal composition and particle volume, such that a higher Ag content or a larger particle size led to significantly slower metal redistribution. We developed a simple theoretical model based on Fick's first law that can correctly predict the composition- and size-dependent alloying behavior in Au-Ag nanoparticles, as observed experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA