Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 53(4): 418-430.e4, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32428455

RESUMO

Capillary morphogenesis gene 2 (CMG2/ANTXR2) is a cell surface receptor for both collagen VI and anthrax toxin. Biallelic loss-of-function mutations in CMG2 lead to a severe condition, hyaline fibromatosis syndrome (HFS). We have here dissected a network of dynamic interactions between CMG2 and various actin interactors and regulators, describing a different behavior from other extracellular matrix receptors. CMG2 binds talin, and thereby the actin cytoskeleton, only in its ligand-free state. Extracellular ligand binding leads to src-dependent talin release and recruitment of the actin cytoskeleton regulator RhoA and its effectors. These sequential interactions of CMG2 are necessary for the control of oriented cell division during fish development. Finally, we demonstrate that effective switching between talin and RhoA binding is required for the intracellular degradation of collagen VI in human fibroblasts, which explains why HFS mutations in the cytoskeleton-binding domain lead to dysregulation of extracellular matrix homeostasis.


Assuntos
Colágeno Tipo VI/metabolismo , Endocitose , Síndrome da Fibromatose Hialina/patologia , Receptores de Colágeno/metabolismo , Receptores de Peptídeos/metabolismo , Talina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/metabolismo , Feminino , Humanos , Síndrome da Fibromatose Hialina/genética , Síndrome da Fibromatose Hialina/metabolismo , Ligantes , Masculino , Mutação , Receptores de Colágeno/genética , Receptores de Peptídeos/genética , Talina/genética , Peixe-Zebra , Proteína rhoA de Ligação ao GTP/genética
2.
PLoS One ; 11(1): e0147515, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808260

RESUMO

Ubiquitin-specific protease 19 (USP19) is one of the deubiquitinating enzymes (DUBs) involved in regulating the ubiquitination status of substrate proteins. There are two major isoforms of USP19 with distinct C-termini; the USP19_a isoform has a transmembrane domain for anchoring to the endoplasmic reticulum, while USP19_b contains an EEVD motif. Here, we report that the cytoplasmic isoform USP19_b up-regulates the protein levels of the polyglutamine (polyQ)-containing proteins, ataxin-3 (Atx3) and huntingtin (Htt), and thus promotes aggregation of their polyQ-expanded species in cell models. Our data demonstrate that USP19_b may orchestrate the stability, aggregation and degradation of the polyQ-expanded proteins through the heat shock protein 90 (HSP90) chaperone system. USP19_b directly interacts with HSP90 through its N-terminal CS (CHORD and SGT1)/P23 domains. In conjunction with HSP90, the cytoplasmic USP19 may play a key role in triage decision for the disease-related polyQ-expanded substrates, suggesting a function of USP19 in quality control of misfolded proteins by regulating their protein levels.


Assuntos
Ataxina-3/metabolismo , Citoplasma/enzimologia , Endopeptidases/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Regulação para Cima
3.
F1000Res ; 4: 261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339475

RESUMO

Protein S-palmitoylation is a reversible post-translational modification that regulates many key biological processes, although the full extent and functions of protein S-palmitoylation remain largely unexplored. Recent developments of new chemical methods have allowed the establishment of palmitoyl-proteomes of a variety of cell lines and tissues from different species.  As the amount of information generated by these high-throughput studies is increasing, the field requires centralization and comparison of this information. Here we present SwissPalm ( http://swisspalm.epfl.ch), our open, comprehensive, manually curated resource to study protein S-palmitoylation. It currently encompasses more than 5000 S-palmitoylated protein hits from seven species, and contains more than 500 specific sites of S-palmitoylation. SwissPalm also provides curated information and filters that increase the confidence in true positive hits, and integrates predictions of S-palmitoylated cysteine scores, orthologs and isoform multiple alignments. Systems analysis of the palmitoyl-proteome screens indicate that 10% or more of the human proteome is susceptible to S-palmitoylation. Moreover, ontology and pathway analyses of the human palmitoyl-proteome reveal that key biological functions involve this reversible lipid modification. Comparative analysis finally shows a strong crosstalk between S-palmitoylation and other post-translational modifications. Through the compilation of data and continuous updates, SwissPalm will provide a powerful tool to unravel the global importance of protein S-palmitoylation.

4.
EMBO J ; 31(7): 1823-35, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22314232

RESUMO

A third of the human genome encodes N-glycosylated proteins. These are co-translationally translocated into the lumen/membrane of the endoplasmic reticulum (ER) where they fold and assemble before they are transported to their final destination. Here, we show that calnexin, a major ER chaperone involved in glycoprotein folding is palmitoylated and that this modification is mediated by the ER palmitoyltransferase DHHC6. This modification leads to the preferential localization of calnexin to the perinuclear rough ER, at the expense of ER tubules. Moreover, palmitoylation mediates the association of calnexin with the ribosome-translocon complex (RTC) leading to the formation of a supercomplex that recruits the actin cytoskeleton, leading to further stabilization of the assembly. When formation of the calnexin-RTC supercomplex was affected by DHHC6 silencing, mutation of calnexin palmitoylation sites or actin depolymerization, folding of glycoproteins was impaired. Our findings thus show that calnexin is a stable component of the RTC in a manner that is exquisitely dependent on its palmitoylation status. This association is essential for the chaperone to capture its client proteins as they emerge from the translocon, acquire their N-linked glycans and initiate folding.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Calnexina/metabolismo , Lipoilação , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Ribossomos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Inativação Gênica , Glicoproteínas/metabolismo , Células HeLa , Humanos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
5.
PLoS Pathog ; 7(9): e1002259, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980286

RESUMO

Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Animais , Toxinas Bacterianas/genética , Linhagem Celular , Drosophila melanogaster , Regulação Bacteriana da Expressão Gênica/fisiologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Estrutura Terciária de Proteína , Pseudomonas/genética
6.
J Am Chem Soc ; 133(9): 2923-31, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21319816

RESUMO

Protein export is an essential mechanism in living cells and exported proteins are usually translocated through a protein-conducting channel in an unfolded state. Here we analyze, by electrical detection, the entry and transport of unfolded proteins, at the single molecule level, with different stabilities through an aerolysin pore, as a function of the applied voltage and protein concentration. The frequency of ionic current blockades varies exponentially as a function of the applied voltage and linearly as a function of protein concentration. The transport time of unfolded proteins decreases exponentially when the applied voltage increases. We prove that the ionic current blockade duration of a double-sized protein is longer than that assessed for a single protein supporting the transport phenomenon. Our results fit with the theory of confined polyelectrolyte and with some experimental results about DNA or synthetic polyelectrolyte translocation through protein channels as a function of applied voltage. We discuss the potential of the aerolysin nanopore as a tool for protein folding studies as it has already been done for α-hemolysin.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transporte Proteico , Desdobramento de Proteína , Eletricidade , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Proteínas Periplásmicas de Ligação/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA