Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Emerg Infect Dis ; 30(1): 50-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040665

RESUMO

The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020-September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020-21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021-22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.


Assuntos
Charadriiformes , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Países Baixos/epidemiologia , Animais Selvagens , Aves , Patos
2.
Evol Lett ; 7(6): 401-412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045725

RESUMO

Structural variants (SVs) are a major source of genetic variation; and descriptions in natural populations and connections with phenotypic traits are beginning to accumulate in the literature. We integrated advances in genomic sequencing and animal tracking to begin filling this knowledge gap in the Eurasian blackcap. Specifically, we (a) characterized the genome-wide distribution, frequency, and overall fitness effects of SVs using haplotype-resolved assemblies for 79 birds, and (b) used these SVs to study the genetics of seasonal migration. We detected >15 K SVs. Many SVs overlapped repetitive regions and exhibited evidence of purifying selection suggesting they have overall deleterious effects on fitness. We used estimates of genomic differentiation to identify SVs exhibiting evidence of selection in blackcaps with different migratory strategies. Insertions and deletions dominated the SVs we identified and were associated with genes that are either directly (e.g., regulatory motifs that maintain circadian rhythms) or indirectly (e.g., through immune response) related to migration. We also broke migration down into individual traits (direction, distance, and timing) using existing tracking data and tested if genetic variation at the SVs we identified could account for phenotypic variation at these traits. This was only the case for 1 trait-direction-and 1 specific SV (a deletion on chromosome 27) accounted for much of this variation. Our results highlight the evolutionary importance of SVs in natural populations and provide insight into the genetic basis of seasonal migration.

3.
J Anim Ecol ; 92(12): 2399-2411, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37899661

RESUMO

Intermittent breeding is an important tactic in long-lived species that trade off survival and reproduction to maximize lifetime reproductive success. When breeding conditions are unfavourable, individuals are expected to skip reproduction to ensure their own survival. Breeding propensity (i.e. the probability for a mature female to breed in a given year) is an essential parameter in determining reproductive output and population dynamics, but is not often studied in birds because it is difficult to obtain unbiased estimates. Breeding conditions are especially variable at high latitudes, potentially resulting in a large effect on breeding propensity of Arctic-breeding migratory birds, such as geese. With a novel approach, we used GPS-tracking data to determine nest locations, breeding propensity and nesting success of barnacle geese, and studied how these varied with breeding latitude and timing of arrival on the breeding grounds relative to local onset of spring. Onset of spring at the breeding grounds was a better predictor of breeding propensity and nesting success than relative timing of arrival. At Arctic latitudes (>66° N), breeding propensity decreased from 0.89 (95% CI: 0.65-0.97) in early springs to 0.22 (95% CI: 0.06-0.55) in late springs, while at temperate latitudes, it varied between 0.75 (95% CI: 0.38-0.93) and 0.89 (95% CI: 0.41-0.99) regardless of spring phenology. Nesting success followed a similar pattern and was lower in later springs at Arctic latitudes, but not at temperate latitudes. In early springs, a larger proportion of geese started breeding despite arriving late relative to the onset of spring, possibly because the early spring enabled them to use local resources to fuel egg laying and incubation. While earlier springs due to climate warming are considered to have mostly negative repercussions on reproductive success through phenological mismatches, our results suggest that these effects may partly be offset by higher breeding propensity and nesting success.


Assuntos
Migração Animal , Gansos , Humanos , Feminino , Animais , Estações do Ano , Clima , Regiões Árticas , Reprodução , Cruzamento
4.
Oecologia ; 202(2): 287-298, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37270441

RESUMO

Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.


Assuntos
Gansos , Thoracica , Animais , Migração Animal , Estações do Ano
5.
One Health ; 16: 100533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363259

RESUMO

Introduction: In 2020, the first Dutch West Nile virus (WNV) infected birds were detected through risk-targeted surveillance of songbirds. Retrospective testing of patients with unexplained neurological disease revealed human WNV infections in July and August 2020. Bird ringers are highly exposed to mosquito bites and possibly avian excrements during ringing activities. This study therefore investigates whether bird ringers are at higher risk of exposure to WNV and Usutu virus (USUV). Methods: Dutch bird ringers were asked to provide a single serum sample (May - September 2021) and to fill out a survey. Sera were screened by protein microarray for presence of specific IgG against WNV and USUV non-structural protein 1 (NS1), followed by focus reduction virus neutralization tests (FRNT). Healthcare workers (2009-2010), the national immunity cohort (2016-2017) and blood donors (2021) were used as control groups without this occupational exposure. Results: The majority of the 157 participating bird ringers was male (132/157, 84%) and the median age was 62 years. Thirty-seven participants (37/157, 23.6%) showed WNV and USUV IgG microarray signals above background, compared to 6.4% (6/94) in the community cohort and 2.1% (2/96) in blood donors (p < 0.01). Two seroreactive bird ringers were confirmed WNV or USUV positive by FRNT. The majority of seroreactive bird ringers travelled to EU countries with reported WNV human cases (30/37, 81%) (p = 0.07). No difference was observed between bird ringers with and without previous yellow fever vaccination. Discussion: The higher frequency of WNV and/or USUV IgG reactive bird ringers indicates increased flavivirus exposure compared to the general population, suggesting that individuals with high-exposure professions may be considered to complement existing surveillance systems. However, the complexity of serological interpretation in relation to location-specific exposure (including travel), and antibody cross-reactivity, remain a challenge when performing surveillance of emerging flaviviruses in low-prevalence settings.

6.
Ecology ; 104(4): e4001, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799146

RESUMO

The physiological performance of organisms depends on their environmental context, resulting in performance-response curves along environmental gradients. Parasite performance-response curves are generally expected to be broader than those of their hosts due to shorter generation times and hence faster adaptation. However, certain environmental conditions may limit parasite performance more than that of the host, thereby providing an environmental refuge from disease. Thermal disease refuges have been extensively studied in response to climate warming, but other environmental factors may also provide environmental disease refuges which, in turn, respond to global change. Here, we (1) showcase laboratory and natural examples of refuges from parasites along various environmental gradients, and (2) provide hypotheses on how global environmental change may affect these refuges. We strive to synthesize knowledge on potential environmental disease refuges along different environmental gradients including salinity and nutrients, in both natural and food-production systems. Although scaling up from single host-parasite relationships along one environmental gradient to their interaction outcome in the full complexity of natural environments remains difficult, integrating host and parasite performance-response can serve to formulate testable hypotheses about the variability in parasitism outcomes and the occurrence of environmental disease refuges under current and future environmental conditions.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Interações Hospedeiro-Parasita/fisiologia , Temperatura , Aclimatação , Adaptação Fisiológica , Mudança Climática
7.
One Health ; 15: 100456, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532676

RESUMO

Wild birds are reservoirs of several zoonotic arboviruses including West Nile virus (WNV) and Usutu virus (USUV), and are often monitored as indicators for virus introduction and spread. To optimize the bird surveillance for arboviruses in the Netherlands and to explore the possibilities for citizen science in surveillance, we investigated the suitability of using alternative sample types from live and dead birds. The sensitivity of molecular detection via RT-PCR of viral RNA in feather, heart, lung, throat and cloaca swabs from dead birds, and serum, dried blood spots (DBS) and throat and cloaca swabs from live birds were compared. IgY antibody detection was also assessed from DBS relative to serum on protein-microarray and virus neutralization test. Feathers showed a high detection sensitivity for USUV RNA in both live and dead birds, and no significant decrease was observed in the RNA loads in the feathers after being stored dry at room temperature for 43 days. Additionally, viral RNAs extracted from feathers of day 0 and 43 were successfully sequenced. The results indicated no statistical significant difference in sensitivity and viral loads detection in heart, spleen, and lung relative to corresponding brain samples in dead birds. In live birds, viral RNA loads did not differ between throat and cloaca swabs. This study identified less-invasive sample types that allows involvement of citizens in collecting samples from wild birds for arbovirus surveillance. Sensitivity and specificity of DBS-based antibody detections were significantly lower and therefore need optimization.

8.
Proc Natl Acad Sci U S A ; 119(10): e2105416119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238646

RESUMO

SignificanceClimate change is impacting wild populations, but its relative importance compared to other causes of change is still unclear. Many studies assume that changes in traits primarily reflect effects of climate change, but this assumption is rarely tested. We show that in European birds global warming was likely the single most important contributor to temporal trends in laying date, body condition, and offspring number. However, nontemperature factors were also important and acted in the same direction, implying that attributing temporal trends solely to rising temperatures overestimates the impact of climate warming. Differences among species in the amount of trait change were predominantly determined by these nontemperature effects, suggesting that species differences are not due to variation in sensitivity to temperature.


Assuntos
Aves/fisiologia , Aquecimento Global , Animais , Dinâmica Populacional , Especificidade da Espécie
9.
J Anim Ecol ; 91(2): 417-427, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807466

RESUMO

The postnatal growth period is a crucial life stage, with potential lifelong effects on an animal's fitness. How fast animals grow depends on their life-history strategy and rearing environment, and interspecific comparisons generally show higher growth rates at higher latitudes. However, to elucidate the mechanisms behind this gradient in growth rate, intraspecific comparisons are needed. Recently, barnacle geese expanded their Arctic breeding range from the Russian Barents Sea coast southwards, and now also breed along the Baltic and North Sea coasts. Baltic breeders shortened their migration, while barnacle geese breeding along the North Sea stopped migrating entirely. We collected cross-sectional data on gosling tarsus length, head length and body mass, and constructed population-specific growth curves to compare growth rates among three populations (Barents Sea, Baltic Sea and North Sea) spanning 17° in latitude. Growth rate was faster at higher latitudes, and the gradient resembled the latitudinal gradient previously observed in an interspecific comparison of precocial species. Differences in day length among the three breeding regions could largely explain the observed differences in growth rate. In the Baltic, and especially in the Arctic population, growth rate was slower later in the season, most likely because of the stronger seasonal decline in food quality. Our results suggest that differences in postnatal growth rate between the Arctic and temperate populations are mainly a plastic response to local environmental conditions. This plasticity can increase the individuals' ability to cope with annual variation in local conditions, but can also increase the potential to re-distribute and adapt to new breeding environments.


Assuntos
Migração Animal , Gansos , Animais , Regiões Árticas , Estudos Transversais , Gansos/fisiologia , Estações do Ano
10.
Ecol Evol ; 11(23): 16600-16617, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938460

RESUMO

The use of biologging and tracking devices is widespread in avian behavioral and ecological studies. Carrying these devices rarely has major behavioral or fitness effects in the wild, yet it may still impact animals in more subtle ways, such as during high power demanding escape maneuvers. Here, we tested whether or not great tits (Parus major) carrying a backpack radio-tag changed their body mass or flight behavior over time to compensate for the detrimental effect of carrying a tag. We tested 18 great tits, randomly assigned to a control (untagged) or one of two different types of a radio-tag as used in previous studies in the wild (0.9 g or 1.2 g; ~5% or ~6-7% of body mass, respectively), and determined their upward escape-flight performance 1, 7, 14, and 28 days after tagging. In between experiments, birds were housed in large free-flight aviaries. For each escape-flight, we used high-speed 3D videography to determine flight paths, escape-flight speed, wingbeat frequency, and actuator disk loading (ratio between the bird weight and aerodynamic thrust production capacity). Tagged birds flew upward with lower escape-flight speeds, caused by an increased actuator disk loading. During the 28-day period, all groups slightly increased their body mass and their in-flight wingbeat frequency. In addition, during this period, all groups of birds increased their escape-flight speed, but tagged birds did so at a lower rate than untagged birds. This suggests that birds may increase their escape-flight performance through skill learning; however, tagged birds still remained slower than controls. Our findings suggest that tagging a songbird can have a prolonged effect on the performance of rapid flight maneuvers. Given the absence of tag effects on reproduction and survival in most songbird radio-tagging studies, tagged birds in the wild might adjust their risk-taking behavior to avoid performing rapid flight maneuvers.

11.
Behav Ecol ; 32(3): 539-552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104110

RESUMO

Climate warming advances the optimal timing of breeding for many animals. For migrants to start breeding earlier, a concurrent advancement of migration is required, including premigratory fueling of energy reserves. We investigate whether barnacle geese are time constrained during premigratory fueling and whether there is potential to advance or shorten the fueling period to allow an earlier migratory departure. We equipped barnacle geese with GPS trackers and accelerometers to remotely record birds' behavior, from which we calculated time budgets. We examined how time spent foraging was affected by the available time (during daylight and moonlit nights) and thermoregulation costs. We used an energetic model to assess onset and rates of fueling and whether geese can further advance fueling by extending foraging time. We show that, during winter, when facing higher thermoregulation costs, geese consistently foraged at night, especially during moonlit nights, in order to balance their energy budgets. In spring, birds made use of the increasing day length and gained body stores by foraging longer during the day, but birds stopped foraging extensively during the night. Our model indicates that, by continuing nighttime foraging throughout spring, geese may have some leeway to advance and increase fueling rate, potentially reaching departure body mass 4 days earlier. In light of rapid climatic changes on the breeding grounds, whether this advancement can be realized and whether it will be sufficient to prevent phenological mismatches remains to be determined.

12.
Proc Biol Sci ; 287(1938): 20201339, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143577

RESUMO

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10-86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.


Assuntos
Migração Animal , Passeriformes , Animais , Evolução Biológica , Europa (Continente) , Isolamento Reprodutivo , Aves Canoras
13.
Euro Surveill ; 25(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33034280

RESUMO

On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic.


Assuntos
Culex/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves , Culicidae/virologia , Interações Hospedeiro-Parasita , Países Baixos/epidemiologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vigilância de Evento Sentinela/veterinária , Especificidade da Espécie , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/classificação
14.
Parasit Vectors ; 13(1): 464, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912330

RESUMO

BACKGROUND: Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. METHODS: Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. RESULTS: The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. CONCLUSIONS: The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/isolamento & purificação , Espécies Introduzidas/estatística & dados numéricos , Infecções por Arbovirus/epidemiologia , Arbovírus/classificação , Arbovírus/genética , Arbovírus/fisiologia , Humanos , Países Baixos/epidemiologia , Análise Espaço-Temporal
15.
Ecol Evol ; 10(13): 6274-6287, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724513

RESUMO

The consequences of bird mortality caused by collisions with wind turbines are increasingly receiving attention. So-called acceptable mortality limits of populations, that is, those that assume that 1%-5% of additional mortality and the potential biological removal (PBR), provide seemingly clear-cut methods for establishing the reduction in population viability.We examine how the application of these commonly used mortality limits could affect populations of the Common Starling, Black-tailed Godwit, Marsh Harrier, Eurasian Spoonbill, White Stork, Common Tern, and White-tailed Eagle using stochastic density-independent and density-dependent Leslie matrix models.Results show that population viability can be very sensitive to proportionally small increases in mortality. Rather than having a negligible effect, we found that a 1% additional mortality in postfledging cohorts of our studied populations resulted in a 2%-24% decrease in the population level after 10 years. Allowing a 5% mortality increase to existing mortality resulted in a 9%-77% reduction in the populations after 10 years.When the PBR method is used in the density-dependent simulations, the proportional change in the resulting growth rate and carrying capacity was species-independent and largely determined by the recovery factor (F r). When F r = 1, a value typically used for robust populations, additional mortality resulted in a 50%-55% reduction in the equilibrium density and the resulting growth rate. When F r = 0.1, used for threatened populations, the reduction in the equilibrium density and growth rate was about 5%. Synthesis and applications. Our results show that by allowing a mortality increase from wind farm collisions according to both criteria, the population impacts of these collisions can still be severe. We propose a simple new method as an alternative that was able to estimate mortality impacts of age-structured stochastic density-dependent matrix models.

16.
Oecologia ; 193(2): 285-297, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529317

RESUMO

Ontogenetic niche shifts have helped to understand population dynamics. Here we show that ontogenetic niche shifts also offer an explanation, complementary to traditional concepts, as to why certain species show seasonal migration. We describe how demographic processes (survival, reproduction and migration) and associated ecological requirements of species may change with ontogenetic stage (juvenile, adult) and across the migratory range (breeding, non-breeding). We apply this concept to widely different species (dark-bellied brent geese (Branta b. bernicla), humpback whales (Megaptera novaeangliae) and migratory Pacific salmon (Oncorhynchus gorbuscha) to check the generality of this hypothesis. Consistent with the idea that ontogenetic niche shifts are an important driver of seasonal migration, we find that growth and survival of juvenile life stages profit most from ecological conditions that are specific to breeding areas. We suggest that matrix population modelling techniques are promising to detect the importance of the ontogenetic niche shifts in maintaining migratory strategies. As a proof of concept, we applied a first analysis to resident, partial migratory and fully migratory populations of barnacle geese (Branta leucopsis). We argue that recognition of the costs and benefits of migration, and how these vary with life stages, is important to understand and conserve migration under global environmental change.


Assuntos
Migração Animal , Salmão , Animais , Dinâmica Populacional , Reprodução , Estações do Ano
17.
Oecologia ; 191(4): 1003-1014, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31624958

RESUMO

Rapid climate warming is driving organisms to advance timing of reproduction with earlier springs, but the rate of advancement shows large variation, even among populations of the same species. In this study, we investigated how the rate of advancement in timing of reproduction with a warming climate varies for barnacle goose (Branta leucopsis) populations breeding at different latitudes in the Arctic. We hypothesized that populations breeding further North are generally more time constrained and, therefore, produce clutches earlier relative to the onset of spring than southern populations. Therefore, with increasing temperatures and a progressive relief of time constraint, we expected latitudinal differences to decrease. For the years 2000-2016, we determined the onset of spring from snow cover data derived from satellite images, and compiled data on egg laying date and reproductive performance in one low-Arctic and two high-Arctic sites. As expected, high-Arctic geese laid their eggs earlier relative to snowmelt than low-Arctic geese. Contrary to expectations, advancement in laying dates was similar in high- and low-Arctic colonies, at a rate of 27% of the advance in date of snowmelt. Although advancement of egg laying did not fully compensate for the advancement of snowmelt, geese laying eggs at intermediate dates in the low Arctic were the most successful breeders. In the high Arctic, however, early nesting geese were the most successful breeders, suggesting that high-Arctic geese have not advanced their laying dates sufficiently to earlier springs. This indicates that high-Arctic geese especially are vulnerable to negative effects of climate warming.


Assuntos
Migração Animal , Gansos , Animais , Regiões Árticas , Clima , Reprodução , Estações do Ano
19.
Parasit Vectors ; 12(1): 265, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133059

RESUMO

Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.


Assuntos
Infecções por Arbovirus/epidemiologia , Arbovírus/isolamento & purificação , Mosquitos Vetores/virologia , Animais , Arbovírus/classificação , Vetores Artrópodes/virologia , Vetores de Doenças , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Europa (Continente) , Humanos , Vírus da Febre do Vale do Rift/isolamento & purificação , Fatores de Risco , Vírus do Nilo Ocidental/isolamento & purificação
20.
Nat Commun ; 10(1): 2187, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097711

RESUMO

Tracking seasonally changing resources is regarded as a widespread proximate mechanism underpinning animal migration. Migrating herbivores, for example, are hypothesized to track seasonal foliage dynamics over large spatial scales. Previous investigations of this green wave hypothesis involved few species and limited geographical extent, and used conventional correlation that cannot disentangle alternative correlated effects. Here, we introduce stochastic simulations to test this hypothesis using 222 individual spring migration episodes of 14 populations of ten species of geese, swans and dabbling ducks throughout Europe, East Asia, and North America. We find that the green wave cannot be considered a ubiquitous driver of herbivorous waterfowl spring migration, as it explains observed migration patterns of only a few grazing populations in specific regions. We suggest that ecological barriers and particularly human disturbance likely constrain the capacity of herbivorous waterfowl to track the green wave in some regions, highlighting key challenges in conserving migratory birds.


Assuntos
Migração Animal/fisiologia , Patos/fisiologia , Gansos/fisiologia , Herbivoria/fisiologia , Modelos Biológicos , Animais , Europa (Continente) , Ásia Oriental , América do Norte , Estações do Ano , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA