Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941200

RESUMO

Subject-specific musculoskeletal models generate more accurate joint torque estimates from electromyography (EMG) inputs in relation to experimentally obtained torques. Similarly, reflex Neuromuscular Models (NMMs) that employ COM states in addition to musculotendon information generate muscle activations to musculoskeletal models that better predict ankle torques during perturbed gait. In this study, the reflex NMM of locomotion of one subject is identified by employing an EMG-calibrated musculoskeletal model in unperturbed and perturbed gait. A COM acceleration-enhanced reflex NMM is identified. Subject-specific musculoskeletal models improve torque tracking of the ankle joint in unperturbed and perturbed conditions. COM acceleration-enhanced reflex NMM improves ankle torque tracking especially in early stance and during backward perturbation. Results found herein can guide the implementation of reflex controllers in active prosthetic and orthotic devices.


Assuntos
Articulação do Tornozelo , Tornozelo , Humanos , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Marcha/fisiologia , Eletromiografia , Reflexo , Torque , Aceleração
2.
Hum Mov Sci ; 91: 103138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573800

RESUMO

Humans prioritize regulation of the whole-body angular momentum (WBAM) during walking. When perturbed, modulations of the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) assist in recovering WBAM. For sagittal-plane perturbations of the WBAM given at toe off right (TOR), horizontal GRF modulations and not centre of pressure (COP) modulations were mainly responsible for these moment arm modulations. In this study, we aimed to find whether the instant of perturbations affects the contributions of the GRF and/or CoP modulations to the moment arm changes, in balance recovery during very slow walking. Perturbations of the WBAM were applied at three different instants of the gait cycle, namely at TOR, mid-swing (MS), and heel strike right (HSR). Forces equal to 16% of the participant's body weight were applied simultaneously to the pelvis and upper body in opposite directions for a duration of 150 ms. The results showed that the perturbation onset did not significantly affect the GRF moment arm modulation. However, the contribution of both the CoP and GRF modulation to the moment arm changes did change depending on the perturbation instant. After perturbations resulting in a forward pitch of the trunk a larger contribution was present from the CoP modulation when perturbations were given at MS or HSR, compared to perturbations at TOR. After backward pitch perturbations given at MS and HSR the CoP modulation counteracted the moment arm required for WBAM recovery. Therefore a larger contribution from the horizontal GRF was needed to direct the GRF posterior to the CoM and recover WBAM. In conclusion, the onset of WBAM perturbations does not affect the moment arm modulation needed for WBAM recovery, while it does affect the way CoP and GRF modulation contribute to that recovery.


Assuntos
Marcha , Caminhada , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Movimento (Física) , Pelve/fisiologia , Gravitação , Fenômenos Biomecânicos , Equilíbrio Postural/fisiologia
3.
J Biomech ; 157: 111727, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499430

RESUMO

Lumbar joint compression forces have been linked to the development of chronic low back pain, which is specially present in occupational environments. Offline methodologies for lumbosacral joint compression force estimation are not commonly integrated in occupational or medical applications due to the highly time-consuming and complex post-processing procedures. Hence, applications such as real-time adjustment of assistive devices (i.e., back-support exoskeletons) for optimal modulation of compression forces remains unfeasible. Here, we present a real-time electromyography (EMG)-driven musculoskeletal model, capable of estimating accurate lumbosacral joint moments and plausible compression forces. Ten participants performed box-lifting tasks (5 and 15 kg) with and without the Laevo Flex back-support exoskeleton using squat and stoop lifting techniques. Lumbosacral kinematics and EMGs from abdominal and thoracolumbar muscles were used to drive, in real-time, subject-specific EMG-driven models, and estimate lumbosacral joint moments and compression forces. Real-time EMG-model derived moments showed high correlations (R2 = 0.76 - 0.83) and estimation errors below 30% with respect to reference inverse dynamic moments. Compared to unassisted lifting conditions, exoskeleton liftings showed mean lumbosacral joint moments and compression forces reductions of 11.9 - 18.7 Nm (6 - 12% of peak moment) and 300 - 450 N (5 - 10%), respectively. Our modelling framework was capable of estimating in real-time, valid lumbosacral joint moments and compression forces in line with in vivo experimental data, as well as detecting the biomechanical effects of a passive back-support exoskeleton. Our presented technology may lead to a new class of bio-protective robots in which personalized assistance profiles are provided based on subject-specific musculoskeletal variables.


Assuntos
Exoesqueleto Energizado , Remoção , Humanos , Eletromiografia/métodos , Região Lombossacral/fisiologia , Fenômenos Biomecânicos , Músculos Abdominais
4.
J Neuroeng Rehabil ; 20(1): 82, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370175

RESUMO

BACKGROUND: Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. METHODS: Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. RESULTS: Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. CONCLUSION: Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.


Assuntos
Exoesqueleto Energizado , Humanos , Eletromiografia , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
5.
J Biomech ; 152: 111580, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058767

RESUMO

Spatiotemporal gait characteristics change during very slow walking, a relevant speed considering individuals with movement disorders or using assistive devices. However, we lack insights in how very slow walking affects human balance control. Therefore, we aimed to identify how healthy individuals use balance strategies while walking very slow. Ten healthy participants walked on a treadmill at an average speed of 0.43ms-1, while being perturbed at toe off right by either perturbations of the whole-body linear momentum (WBLM) or angular momentum (WBAM). WBLM perturbations were given by a perturbation on the pelvis in forward or backward direction. The WBAM was perturbed by two simultaneous perturbations in opposite directions on the pelvis and upper body. The given perturbations had magnitudes of 4, 8, 12 and 16% of the participant's body weight, and lasted for 150ms. After perturbations of the WBLM the centre of pressure placement was modulated using the ankle joint, while keeping the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) small. After the perturbations of the WBAM a quick recovery was initiated, using the hip joint and adjusting the horizontal GRF to create a moment arm with respect to the CoM. These findings suggest no fundamental differences in the use of balance strategies at very slow walking compared to normal speeds. Still as the gait phases last longer, this time was exploited to counteract perturbations in the ongoing gait phase.


Assuntos
Marcha , Caminhada , Humanos , Fenômenos Biomecânicos , Movimento (Física) , Pelve , Equilíbrio Postural
6.
J Biomech ; 144: 111307, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191432

RESUMO

Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation-contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle-tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion-extension moments displayed high correlation, R2 (mean range: 0.88-0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle-tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force-velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.


Assuntos
Remoção , Coluna Vertebral , Humanos , Eletromiografia , Fenômenos Biomecânicos/fisiologia , Coluna Vertebral/fisiologia , Região Lombossacral , Músculo Esquelético/fisiologia
7.
J Biomech ; 141: 111169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738058

RESUMO

Healthy individuals highly regulate their whole body angular momentum (WBAM) during walking. Since WBAM regulation is essential in maintaining balance, a better understanding is required on how healthy individuals recover from WBAM perturbations. We therefore studied how healthy individuals recover WBAM in the sagittal plane. WBAM can be regulated by adjusting the moment arm of the ground reaction force (GRF) vector with respect to the whole-body centre of mass (CoM). In principle this can be done by centre of pressure (CoP) modulation and/or adjustments of the GRF direction. Two simultaneous perturbations of the same magnitude were applied in opposite direction to the pelvis and upper body (0.34m apart) to perturb WBAM but not the whole body linear momentum (WBLM), while participants walked on a treadmill. The perturbations were given at toe off right, had a magnitude of 4, 8, 12 and 16% of the participant's body weight, and lasted for 150ms. A recovery of the WBAM was seen directly after the perturbations, induced by adapting the moment arm of the GRF with respect to the CoM. The hip joint of the stance leg played an important role in achieving the WBAM recovery. A change in the direction of the GRF vector and not a contributing CoP modulation, caused the change in moment arm. However, the change in GRF direction came from a change in the horizontal GRF, which also affects the WBLM. This suggest that regulating WBAM may take precedence over the WBLM in early recovery.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos/fisiologia , Teste de Esforço , Marcha/fisiologia , Humanos , Movimento (Física) , Caminhada/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34847033

RESUMO

Active prosthetic and orthotic devices have the potential to increase quality of life for individuals with impaired mobility. However, more research into human-like control methods is needed to create seamless interaction between device and user. In forward simulations the reflex-based neuromuscular model (RNM) by Song and Geyer shows promising similarities with real human gait in unperturbed conditions. The goal of this work was to validate and, if needed, extend the RNM to reproduce human kinematics and kinetics during walking in unperturbed and perturbed conditions. The RNM was optimized to reproduce joint torque, calculated with inverse dynamics, from kinematic and force data of unperturbed and perturbed treadmill walking of able-bodied human subjects. Torques generated by the RNM matched closely with torques found from inverse dynamics analysis on human data for unperturbed walking. However, for perturbed walking the modulation of the ankle torque in the RNM was opposite to the modulation observed in humans. Therefore, the RNM was extended with a control module that activates and inhibits muscles around the ankle of the stance leg, based on changes in whole body center of mass velocity. The added module improves the ability of the RNM to replicate human ankle torque response in response to perturbations. This reflex-based neuromuscular model with whole body center of mass velocity feedback can reproduce gait kinetics of unperturbed and perturbed gait, and as such holds promise as a basis for advanced controllers of prosthetic and orthotic devices.


Assuntos
Tornozelo , Qualidade de Vida , Articulação do Tornozelo , Fenômenos Biomecânicos , Retroalimentação , Marcha , Humanos , Reflexo , Caminhada
9.
J Biomech ; 126: 110637, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34325123

RESUMO

Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to increase insight into how humans modulate the CoP during DS, and which CoP modulations are theoretically possible to maintain balance in the sagittal plane. Three variables sufficient to describe the shape, length and duration of the DS CoP trajectory of the total GRF, were assessed in perturbed human walking. To counteract the forward perturbations, braking was required and all CoP variables showed modulations correlated to the observed change in CoM velocity over the DS phase. These correlations were absent after backward perturbations, when only little propulsion was needed to counteract the perturbation. Using a linearized inverted pendulum model we could explore how the observed parameter modulations are effective in controlling the CoM. The distance the CoP travels forward and the instant the leading leg was loaded largely affected the CoM velocity, while the duration mainly affected the CoM position. The simulations also showed that various combinations of CoP parameters can reach a desired CoM position and velocity at the end of DS, and that even a full recovery in the sagittal plane within DS would theoretically have been possible. However, the human subjects did not exploit the therefore required CoP modulations. Overall, modulating the CoP trajectory in DS does effectively contributes to balance recovery.


Assuntos
Marcha , Caminhada , , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-33417559

RESUMO

In this paper, we present the design, control, and preliminary evaluation of the Symbitron exoskeleton, a lower limb modular exoskeleton developed for people with a spinal cord injury. The mechanical and electrical configuration and the controller can be personalized to accommodate differences in impairments among individuals with spinal cord injuries (SCI). In hardware, this personalization is accomplished by a modular approach that allows the reconfiguration of a lower-limb exoskeleton with ultimately eight powered series actuated (SEA) joints and high fidelity torque control. For SCI individuals with an incomplete lesion and sufficient hip control, we applied a trajectory-free neuromuscular control (NMC) strategy and used the exoskeleton in the ankle-knee configuration. For complete SCI individuals, we used a combination of a NMC and an impedance based trajectory tracking strategy with the exoskeleton in the ankle-knee-hip configuration. Results of a preliminary evaluation of the developed hardware and software showed that SCI individuals with an incomplete lesion could naturally vary their walking speed and step length and walked faster compared to walking without the device. SCI individuals with a complete lesion, who could not walk without support, were able to walk with the device and with the support of crutches that included a push-button for step initiation Our results demonstrate that an exoskeleton with modular hardware and control allows SCI individuals with limited or no lower limb function to receive tailored support and regain mobility.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Muletas , Humanos , Caminhada
11.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 2015-2024, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32746307

RESUMO

Human-like balance controllers are desired for wearable exoskeletons in order to enhance human-robot interaction. Momentum-based controllers (MBC) have been successfully applied in bipeds, however, it is unknown to what degree they are able to mimic human balance responses. In this paper, we investigated the ability of an MBC to generate human-like balance recovery strategies during stance, and compared the results to those obtained with a linear full-state feedback (FSF) law. We used experimental data consisting of balance recovery responses of nine healthy subjects to anteroposterior platform translations of three different amplitudes. The MBC was not able to mimic the combination of trunk, thigh and shank angle trajectories that humans generated to recover from a perturbation. Compared to the FSF, the MBC was better at tracking thigh angles and worse at tracking trunk angles, whereas both controllers performed similarly in tracking shank angles. Although the MBC predicted stable balance responses, the human-likeness of the simulated responses generally decreased with an increased perturbation magnitude. Specifically, the shifts from ankle to hip strategy generated by the MBC were not similar to the ones observed in the human data. Although the MBC was not superior to the FSF in predicting human-like balance, we consider the MBC to be more suitable for implementation in exoskeletons, because of its ability to handle constraints (e.g. ankle torque limits). Additionally, more research into the control of angular momentum and the implementation of constraints could eventually result in the generation of more human-like balance recovery strategies by the MBC.


Assuntos
Tornozelo , Equilíbrio Postural , Fenômenos Biomecânicos , Humanos , Movimento (Física) , Torque
12.
J Biomech ; 106: 109813, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517986

RESUMO

Changes in human balance control can objectively be assessed using system identification techniques in combination with support surface translations. However, large, expensive and complex motion platforms are required, which are not suitable for the clinic. A treadmill could be a simple alternative to apply support surface translations. In this paper we first validated the estimation of the joint stiffness of an inverted pendulum using system identification methods in combination with support surface translations, by comparison with the joint stiffness calculated using a linear regression method. Second, we used the system identification method to investigate the effect of horizontal ground reaction forces on the estimation of the ankle torque and the dynamics of the stabilizing mechanism of 12 healthy participants. Ankle torque and resulting frequency response functions, which describes the dynamics of the stabilizing mechanism, were calculated by both including and excluding horizontal ground reaction forces. Results showed that the joint stiffness of an inverted pendulum estimated using system identification is comparable to the joint stiffness estimated by a regression method. Secondly, within the induced body sway angles, the ankle torque and frequency response function of the joint dynamics calculated by both including and excluding horizontal ground reaction forces are similar. Therefore, the horizontal ground reaction forces play a minor role in calculating the ankle torque and frequency response function of the dynamics of the stabilizing mechanism and can thus be omitted.


Assuntos
Articulação do Tornozelo , Tornozelo , Fenômenos Biomecânicos , Humanos , Torque
13.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1157-1167, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248116

RESUMO

Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Robot Interaction (HRI). Achilles, an autonomous wearable robot able to assist ankle during walking, was developed for iSCI subjects and utilizes a NeuroMuscular Controller (NMC). NMC can be used to adapt robotic assistance based on specific residual functional abilities of subjects. The main aim of this pilot study was to analyze the effects of the NMC-controlled Achilles, used as an assistive device, on chronic iSCI participants' performance, by assessing gait speed during 10-session training of robot-aided walking. Secondary aims were to assess training impact on participants' motion, clinical and functional features and to evaluate subjective perspective in terms of attitude towards technology, workload, usability and satisfaction. Results showed that 5 training sessions were necessary to significantly improve robot-aided gait speed on short paths and consequently to optimize HRI. Moreover, the training allowed participants who initially were not able to walk for 6 minutes, to improve gait endurance during Achilles-aided walking and to reduce perceived fatigue. Improvements were obtained also in gait speed during free walking, thus suggesting a potential rehabilitative impact, even if Achilles-aided walking was not faster than free walking. Participants' subjective evaluations indicated a positive experience.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Tornozelo , Marcha , Humanos , Projetos Piloto , Medula Espinal , Caminhada
14.
J Biol Regul Homeost Agents ; 34(5 Suppl. 3): 147-164. Technology in Medicine, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33386045

RESUMO

Powered exoskeletons (EXOs) have emerged as potential devices for Spinal Cord Injury (SCI) to support the intervention of physical therapists during therapy (rehabilitation EXOs) as well as to assist lower limb motion during the daily life (assistive EXOs). Although the ankle is considered a key joint for gait restoration after SCI, very few ankle exoskeletons were developed and tested in incomplete SCI (iSCI) population. Among those, the Achilles ankle exoskeleton is the only one embedding a Controller inspired by the neuromuscular system (NeuroMuscular Controller, NMC). In a previous study we demonstrated that a period dedicated to train iSCI subjects in using the Achilles EXO as an assistive aid, improved robot-aided walking speed and surprisingly also generated a positive trend in free walking speed on long and short distances thus suggesting a possible unexpected rehabilitation effect. To further investigate this result, a case-control longitudinal study was conducted in the present work. The aim of this study was to test the hypothesis that Achilles-aided training could improve performance of free walking of chronic iSCI people more than conventional intensity-matched gait rehabilitation. Before and after conventional and robot-aided rehabilitation a number of variables were analyzed, including spatiotemporal parameters, joint kinematics, ground reaction forces, muscle force, spasticity and its related symptoms, balance and personal experience about the training. Results showed that only the NMC-controlled Achilles training allowed participants to significantly walk faster, with a longer step length and a reduced gait cycle time. A slight force and spasticity improvements were also experienced. In terms of subjects' personal experience, Achilles training was perceived more interesting and less physically demanding than conventional rehabilitation.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Tornozelo , Marcha , Humanos , Estudos Longitudinais , Caminhada
15.
J Biomech ; 68: 93-98, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29317105

RESUMO

Understanding balance during human gait is complicated by the abundance of recovery options. Among all possible recovery options, three main strategies are often considered for human balance control, being the ankle, hip, and foot placement strategies. All can be addressed when balance is threatened during walking, but their relative importance remains uncertain. We have previously shown that healthy human subjects did not significantly adjust their foot placement relative to the body's center of mass (COM) in the first recovery step following anteroposterior pelvis perturbations, as compared to unperturbed walking. An ankle strategy could have contributed to the recovery instead. Here the goal is to further elucidate balance strategy preferences by investigating the stepping and hip strategies following these anteroposterior perturbations, but with an ankle strategy made ineffective. This was achieved by physically blocking each ankle and minimizing the support area of each foot through a pair of modified ankle-foot orthoses. These "pin-shoes" enabled stilt-like walking and ensured that foot placement adjustment was the only way to modulate the center of pressure location, comparable to "footless" inverted pendulum models of walking. Despite the pin-shoes, subjects did not additionally address a hip strategy compared to normal walking, but relied on foot placement adjustments instead. The observed foot placement adjustments were furthermore in line with concepts derived from a linear inverted pendulum model of walking. These results suggest low hip strategy priority when a foot placement strategy is available, while the latter can be predicted with concepts derived from a simple walking model.


Assuntos
Pé/fisiologia , Pressão , Tronco/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pelve/fisiologia , Rotação , Adulto Jovem
16.
J Neuroeng Rehabil ; 14(1): 97, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915821

RESUMO

BACKGROUND: Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying the underlying systems. METHODS: Standing balance behaviour of 20 healthy young participants was measured using continuous rotations of the support surface (SS). The dynamic balance behaviour obtained with CLSIT was expressed by sensitivity functions of the ankle torque, body sway and muscle activation of the lower legs to the SS rotation. Balance control models, 1) without activation dynamics, 2) with activation dynamics and 3) with activation dynamics and acceleration feedback, were fitted on the data of all possible combinations of the 3 sensitivity functions. The reliability of the estimated model parameters was represented by the mean relative standard errors of the mean (mSEM) of the estimated parameters, expressed for the basic parameters, the activation dynamics parameters and the acceleration feedback parameter. To investigate the accuracy, a model validation study was performed using simulated data obtained with a comprehensive balance control model. The accuracy of the estimated model parameters was described by the mean relative difference (mDIFF) between the estimated parameters and original parameters. RESULTS: The experimental data showed a low mSEM of the basic parameters, activation dynamics parameters and acceleration feedback parameter by adding muscle activation in combination with activation dynamics and acceleration feedback to the fitted model. From the simulated data, the mDIFF of the basic parameters varied from 22.2-22.4% when estimated using the torque and body sway sensitivity functions. Adding the activation dynamics, acceleration feedback and muscle activation improved mDIFF to 13.1-15.1%. CONCLUSIONS: Adding the muscle activation in combination with the activation dynamics and acceleration feedback to CLSIT improves the accuracy and reliability of the estimated parameters and gives the possibility to separate the neural time delay, electromechanical delay and the intrinsic and reflexive dynamics. To diagnose impaired balance more specifically, it is recommended to add electromyography (EMG) to body sway (with or without torque) measurements in the assessment of the underlying systems.


Assuntos
Eletromiografia/métodos , Equilíbrio Postural/fisiologia , Aceleração , Adulto , Algoritmos , Fenômenos Biomecânicos , Retroalimentação Fisiológica , Feminino , Voluntários Saudáveis , Humanos , Perna (Membro)/fisiologia , Masculino , Modelos Neurológicos , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Rotação , Torque , Adulto Jovem
17.
J Exp Biol ; 219(Pt 10): 1514-23, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26994171

RESUMO

In many simple walking models, foot placement dictates the center of pressure location and ground reaction force components, whereas humans can modulate these aspects after foot contact. Because of the differences, it is unclear to what extent predictions made by models are valid for human walking. Yet, both model simulations and human experimental data have previously indicated that the center of mass (COM) velocity plays an important role in regulating stable walking. Here, perturbed human walking was studied to determine the relationship of the horizontal COM velocity at heel strike and toe-off with the foot placement location relative to the COM, the forthcoming center of pressure location relative to the COM, and the ground reaction forces. Ten healthy subjects received mediolateral and anteroposterior pelvis perturbations of various magnitudes at toe-off, during 0.63 and 1.25 m s(-1) treadmill walking. At heel strike after the perturbation, recovery from mediolateral perturbations involved mediolateral foot placement adjustments proportional to the mediolateral COM velocity. In contrast, for anteroposterior perturbations, no significant anteroposterior foot placement adjustment occurred at this heel strike. However, in both directions the COM velocity at heel strike related linearly to the center of pressure location at the subsequent toe-off. This relationship was affected by the walking speed and was, for the slow speed, in line with a COM velocity-based control strategy previously applied by others in a linear inverted pendulum model. Finally, changes in gait phase durations suggest that the timing of actions could play an important role during the perturbation recovery.


Assuntos
Pelve/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Marcha/fisiologia , Humanos , Análise dos Mínimos Quadrados , Modelos Lineares , Masculino , Modelos Biológicos , Pressão
18.
J Neurophysiol ; 115(3): 1422-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719084

RESUMO

Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields.


Assuntos
Adaptação Fisiológica , Envelhecimento/fisiologia , Articulações/fisiologia , Equilíbrio Postural , Postura , Adulto , Idoso , Tornozelo/crescimento & desenvolvimento , Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Articulações/crescimento & desenvolvimento , Masculino , Modelos Neurológicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Reflexo
19.
J Neurophysiol ; 114(6): 3220-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424578

RESUMO

With sensory reweighting, reliable sensory information is selected over unreliable information during balance by dynamically combining this information. We used system identification techniques to show the weight and the adaptive process of weight change of proprioceptive information during standing balance with age and specific diseases. Ten healthy young subjects (aged between 20 and 30 yr) and 44 elderly subjects (aged above 65 yr) encompassing 10 healthy elderly, 10 with cataract, 10 with polyneuropathy, and 14 with impaired balance, participated in the study. During stance, proprioceptive information of the ankles was disturbed by rotation of the support surface with specific frequency content where disturbance amplitude increased over trials. Body sway and reactive ankle torque were measured to determine sensitivity functions of these responses to the disturbance amplitude. Model fits resulted in a proprioceptive weight (changing over trials), time delay, force feedback, reflexive stiffness, and damping. The proprioceptive weight was higher in healthy elderly compared with young subjects and higher in elderly subjects with cataract and with impaired balance compared with healthy elderly subjects. Proprioceptive weight decreased with increasing disturbance amplitude; decrease was similar in all groups. In all groups, the time delay was higher and the reflexive stiffness was lower compared with young or healthy elderly subjects. In conclusion, proprioceptive information is weighted more with age and in patients with cataract and impaired balance. With age and specific diseases the time delay was higher and reflexive stiffness was lower. These results illustrate the opportunity to detect the underlying cause of impaired balance in the elderly with system identification.


Assuntos
Envelhecimento/fisiologia , Catarata/fisiopatologia , Polineuropatias/fisiopatologia , Equilíbrio Postural , Propriocepção , Adulto , Idoso , Estudos de Casos e Controles , Humanos , Tempo de Reação , Reflexo
20.
J Biomech ; 48(7): 1258-63, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25843262

RESUMO

Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Pé/fisiologia , Postura/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Amplitude de Movimento Articular , Rotação , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA