Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Chem ; 70(5): 759-767, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38484302

RESUMO

BACKGROUND: Identification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands). METHODS: Aliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18-21, and KRAS exon 2-3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance. RESULTS: A broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately. CONCLUSIONS: Divergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine.


Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Mutação , Neoplasias/genética , Neoplasias/sangue , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores ErbB/genética , Receptores ErbB/sangue , Proteínas Proto-Oncogênicas B-raf/genética , Países Baixos
2.
Clin Chem ; 70(1): 220-233, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175597

RESUMO

BACKGROUND: Liquid biopsy testing, especially molecular tumor profiling of circulating tumor DNA (ctDNA) in cell-free plasma, has received increasing interest in recent years as it serves as a reliable alternative for the detection of tumor-specific aberrations to guide treatment decision-making in oncology. Many (commercially available) applications have been developed, however, broad divergences in (pre)analytical work flows and lack of universally applied guidelines impede routine clinical implementation. In this review, critical factors in the blood-based ctDNA liquid biopsy work flow are evaluated. CONTENT: In the preanalytical phase, several aspects (e.g., blood collection tubes [BCTs], plasma processing, and extraction method) affect the quantity and quality of the circulating cell-free DNA (ccfDNA) applicable for subsequent molecular analyses and should meet certain standards to be applied in diagnostic work flows. Analytical considerations, such as analytical input and choice of assay, might vary based on the clinical application (i.e., screening, primary diagnosis, minimal residual disease [MRD], response monitoring, and resistance identification). In addition to practical procedures, variant interpretation and reporting ctDNA results should be harmonized. Collaborative efforts in (inter)national consortia and societies are essential for the establishment of standard operating procedures (SOPs) in attempts to standardize the plasma-based ctDNA analysis work flow. SUMMARY: Development of universally applicable guidelines regarding the critical factors in liquid biopsy testing are necessary to pave the way to clinical implementation for routine diagnostics.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Humanos , Fluxo de Trabalho , Bioensaio , Neoplasia Residual
3.
Clin Chem ; 69(3): 295-307, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644936

RESUMO

BACKGROUND: KRAS circulating tumor DNA (ctDNA) has shown biomarker potential for pancreatic ductal adenocarcinoma (PDAC) but has not been applied in clinical routine yet. We aim to improve clinical applicability of ctDNA detection in PDAC and to study the impact of blood-draw site and time point on the detectability and prognostic role of KRAS mutations. METHODS: 221 blood samples from 108 PDAC patients (65 curative, 43 palliative) were analyzed. Baseline peripheral and tumor-draining portal venous (PV), postoperative, and follow-up blood were analyzed and correlated with prognosis. RESULTS: Significantly higher KRAS mutant detection rates and copy numbers were observed in palliative compared to curative patients baseline blood (58.1% vs 24.6%; P = 0.002; and P < 0.001). Significantly higher KRAS mutant copies were found in PV blood compared to baseline (P < 0.05) samples. KRAS detection in pre- and postoperative and PV blood were significantly associated with shorter recurrence-free survival (all P < 0.015) and identified as independent prognostic markers. KRAS ctDNA status was also an independent unfavorable prognostic factor for shorter overall survival in both palliative and curative cohorts (hazard ratio [HR] 4.9, P = 0.011; HR 6.9, P = 0.008). CONCLUSIONS: KRAS ctDNA detection is an independent adverse prognostic marker in curative and palliative PDAC patients-at all sites of blood draw and a strong follow-up marker. The most substantial prognostic impact was seen for PV blood, which could be an effective novel tool for identifying prognostic borderline patients-guiding future decision-making on neoadjuvant treatment despite anatomical resectability. In addition, higher PV mutant copy numbers contribute to an improved technical feasibility.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Mutação , Biomarcadores Tumorais , Neoplasias Pancreáticas
4.
J Mol Diagn ; 25(1): 36-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402278

RESUMO

Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow. We aimed to develop a micro-costing framework for consistent cost calculation of ctDNA testing. First, the foundation of the framework was built, based on the complete step-wise diagnostic workflow of ctDNA testing. Second, the costing method was set up, including costs for personnel, materials, equipment, overhead, and failures. Third, the framework was evaluated by experts and applied to six case studies, including PCR-, mass spectrometry-, and next-generation sequencing-based platforms, from three Dutch hospitals. The developed ctDNA micro-costing framework includes the diagnostic workflow from blood sample collection to diagnostic test result. The framework was developed from a Dutch perspective and takes testing volume into account. An open access tool is provided to allow for laboratory-specific calculations to explore the total costs of ctDNA testing specific workflow parameters matching the setting of interest. It also allows to straightforwardly assess the impact of alternative prices or assumptions on the cost per sample by simply varying the input parameters. The case studies showed a wide range of costs, from €168 to €7638 ($199 to $9124) per sample, and generated information. These costs are sensitive to the (coverage of) platform, setting, and testing volume.


Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Biomarcadores Tumorais/genética
5.
Clin Chem ; 68(7): 963-972, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35616097

RESUMO

BACKGROUND: Efficient recovery of circulating tumor DNA (ctDNA) depends on the quantity and quality of circulating cell-free DNA (ccfDNA). Here, we evaluated whether various ccfDNA extraction methods routinely applied in Dutch laboratories affect ccfDNA yield, ccfDNA integrity, and mutant ctDNA detection, using identical lung cancer patient-derived plasma samples. METHODS: Aliquots of 4 high-volume diagnostic leukapheresis plasma samples and one artificial reference plasma sample with predetermined tumor-derived mutations were distributed among 14 Dutch laboratories. Extractions of ccfDNA were performed according to local routine standard operating procedures and were analyzed at a central reference laboratory for mutant detection and assessment of ccfDNA quantity and integrity. RESULTS: Mutant molecule levels in extracted ccfDNA samples varied considerably between laboratories, but there was no indication of consistent above or below average performance. Compared to silica membrane-based methods, samples extracted with magnetic beads-based kits revealed an overall lower total ccfDNA yield (-29%; P < 0.0001) and recovered fewer mutant molecules (-41%; P < 0.01). The variant allelic frequency and sample integrity were similar. In samples with a higher-than-average total ccfDNA yield, an augmented recovery of mutant molecules was observed. CONCLUSIONS: In the Netherlands, we encountered diversity in preanalytical workflows with potential consequences on mutant ctDNA detection in clinical practice. Silica membrane-based methodologies resulted in the highest total ccfDNA yield and are therefore preferred to detect low copy numbers of relevant mutations. Harmonization of the extraction workflow for accurate quantification and sensitive detection is required to prevent introduction of technical divergence in the preanalytical phase and reduce interlaboratory discrepancies.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Pulmonares , Patologia Clínica , DNA Tumoral Circulante/genética , Humanos , Dióxido de Silício
6.
Mol Oncol ; 15(11): 2910-2922, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34449963

RESUMO

Immunotherapy for metastasized non-small-cell lung cancer (NSCLC) can show long-lasting clinical responses. Selection of patients based on programmed death-ligand 1 (PD-L1) expression shows limited predictive value for durable clinical benefit (DCB). We investigated whether early treatment effects as measured by a change in circulating tumor DNA (ctDNA) level is a proxy of early tumor response to immunotherapy according to response evaluation criteria in solid tumors v1.1 criteria, progression-free survival (PFS), DCB, and overall survival (OS). To this aim, blood tubes were collected from advanced-stage lung adenocarcinoma patients (n = 100) receiving immune checkpoint inhibitors (ICI) at baseline (t0 ) and prior to first treatment evaluation (4-6 weeks; t1 ). Nontargetable (driver) mutations detected in the pretreatment tumor biopsy were used to quantify tumor-specific ctDNA levels using droplet digital PCR. We found that changes in ctDNA levels were strongly associated with tumor response. A > 30% decrease in ctDNA at t1 correlated with a longer PFS and OS. In total, 80% of patients with a DCB of ≥ 26 weeks displayed a > 30% decrease in ctDNA levels. For patients with a PD-L1 tumor proportion score of ≥ 1%, decreasing ctDNA levels were associated with a higher frequency a DCB (80%) and a prolonged median PFS (85 weeks) and OS (101 weeks) compared with patients with no decrease in ctDNA (34%; 11 and 39 weeks, respectively). This study shows that monitoring of ctDNA dynamics is an easy-to-use and promising tool for assessing PFS, DCB, and OS for ICI-treated NSCLC patients.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
7.
JCO Precis Oncol ; 5: 1540-1553, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994642

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICIs) are increasingly being used in non-small-cell lung cancer (NSCLC), yet biomarkers predicting their benefit are lacking. We evaluated if on-treatment changes of circulating tumor DNA (ctDNA) from ICI start (t0) to after two cycles (t1) assessed with a commercial panel could identify patients with NSCLC who would benefit from ICI. PATIENTS AND METHODS: The molecular ctDNA response was evaluated as a predictor of radiographic tumor response and long-term survival benefit of ICI. To maximize the yield of ctDNA detection, de novo mutation calling was performed. Furthermore, the impact of clonal hematopoiesis (CH)-related variants as a source of biologic noise was investigated. RESULTS: After correction for CH-related variants, which were detected in 75 patients (44.9%), ctDNA was detected in 152 of 167 (91.0%) patients. We observed only a fair agreement of the molecular and radiographic response, which was even more impaired by the inclusion of CH-related variants. After exclusion of those, a ≥ 50% molecular response improved progression-free survival (10 v 2 months; hazard ratio [HR], 0.55; 95% CI, 0.39 to 0.77; P = .0011) and overall survival (18.4 v 5.9 months; HR, 0.44; 95% CI, 0.31 to 0.62; P < .0001) compared with patients not achieving this end point. After adjusting for clinical variables, ctDNA response and STK11/KEAP1 mutations (HR, 2.08; 95% CI, 1.4 to 3.0; P < .001) remained independent predictors for overall survival, irrespective of programmed death ligand-1 expression. A landmark survival analysis at 2 months (n = 129) provided similar results. CONCLUSION: On-treatment changes of ctDNA in plasma reveal predictive information for long-term clinical benefit in ICI-treated patients with NSCLC. A broader NSCLC patient coverage through de novo mutation calling and the use of a variant call set excluding CH-related variants improved the classification of molecular responders, but had no significant impact on survival.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/sangue , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Resultado do Tratamento
8.
Cancers (Basel) ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081150

RESUMO

Plasma-based tumor mutational profiling is arising as a reliable approach to detect primary and therapy-induced resistance mutations required for accurate treatment decision making. Here, we compared the FDA-approved Cobas® EGFR Mutation Test v2 with the UltraSEEK™ Lung Panel on the MassARRAY® System on detection of EGFR mutations, accompanied with preanalytical sample assessment using the novel Liquid IQ® Panel. 137 cancer patient-derived cell-free plasma samples were analyzed with the Cobas® and UltraSEEK™ tests. Liquid IQ® analysis was initially validated (n = 84) and used to determine ccfDNA input for all samples. Subsequently, Liquid IQ® results were applied to harmonize ccfDNA input for the Cobas® and UltraSEEK™ tests for 63 NSCLC patients. The overall concordance between the Cobas® and UltraSEEK™ tests was 86%. The Cobas® test detected more EGFR exon19 deletions and L858R mutations, while the UltraSEEK™ test detected more T790M mutations. A 100% concordance in both the clinical (n = 137) and harmonized (n = 63) cohorts was observed when >10 ng of ccfDNA was used as determined by the Liquid IQ® Panel. The Cobas® and UltraSEEK™ tests showed similar sensitivity in EGFR mutation detection, particularly when ccfDNA input was sufficient. It is recommended to preanalytically determine the ccfDNA concentration accurately to ensure sufficient input for reliable interpretation and treatment decision making.

9.
Mol Oncol ; 14(3): 487-489, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017376

RESUMO

Highly sensitive mutation detection methods enable the application of circulating cell-free DNA for molecular tumor profiling. Recent studies revealed that sequencing artifacts, germline variants, and clonal hematopoiesis confound the interpretation of sequencing results and complicate subsequent treatment decision making and disease monitoring. Parallel sequencing of matched white blood cells promises to overcome these issues and enables appropriate variant calling. Comment on: https://doi.org/10.1002/1878-0261.12617.


Assuntos
Ácidos Nucleicos Livres , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos , Mutação , Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA