Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981776

RESUMO

Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Fígado/enzimologia , Distrofia Muscular do Cíngulo dos Membros , Esfingomielina Fosfodiesterase , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielina Fosfodiesterase/genética
2.
Skelet Muscle ; 10(1): 37, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308300

RESUMO

BACKGROUND: Nonsense or loss-of-function mutations in the non-lysosomal cysteine protease calpain-3 result in limb-girdle muscular dystrophy type 2A (LGMD2A). While calpain-3 is implicated in muscle cell differentiation, sarcomere formation, and muscle cytoskeletal remodeling, the physiological basis for LGMD2A has remained elusive. METHODS: Cell growth, gene expression profiling, and mitochondrial content and function were analyzed using muscle and muscle cell cultures established from healthy and calpain-3-deficient mice. Calpain-3-deficient mice were also treated with PPAR-delta agonist (GW501516) to assess mitochondrial function and membrane repair. The unpaired t test was used to assess the significance of the differences observed between the two groups or treatments. ANOVAs were used to assess significance over time. RESULTS: We find that calpain-3 deficiency causes mitochondrial dysfunction in the muscles and myoblasts. Calpain-3-deficient myoblasts showed increased proliferation, and their gene expression profile showed aberrant mitochondrial biogenesis. Myotube gene expression analysis further revealed altered lipid metabolism in calpain-3-deficient muscle. Mitochondrial defects were validated in vitro and in vivo. We used GW501516 to improve mitochondrial biogenesis in vivo in 7-month-old calpain-3-deficient mice. This treatment improved satellite cell activity as indicated by increased MyoD and Pax7 mRNA expression. It also decreased muscle fatigability and reduced serum creatine kinase levels. The decreased mitochondrial function also impaired sarcolemmal repair in the calpain-3-deficient skeletal muscle. Improving mitochondrial activity by acute pyruvate treatment improved sarcolemmal repair. CONCLUSION: Our results provide evidence that calpain-3 deficiency in the skeletal muscle is associated with poor mitochondrial biogenesis and function resulting in poor sarcolemmal repair. Addressing this deficit by drugs that improve mitochondrial activity offers new therapeutic avenues for LGMD2A.


Assuntos
Calpaína/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Musculares/metabolismo , Animais , Calpaína/genética , Linhagem Celular , Células Cultivadas , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/patologia , Proteínas Musculares/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/patologia , Biogênese de Organelas , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , PPAR delta/agonistas , Tiazóis/farmacologia
3.
Mol Ther ; 26(9): 2231-2242, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30166241

RESUMO

Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice-findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.


Assuntos
Disferlina/deficiência , Distrofias Musculares/tratamento farmacológico , Esteroides/uso terapêutico , Adolescente , Animais , Células Cultivadas , Disferlina/metabolismo , Humanos , Masculino , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Prednisolona/uso terapêutico , Pregnadienodiois/uso terapêutico
4.
Nitric Oxide ; 80: 70-81, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30114530

RESUMO

Sickle cell disease (SCD) patients can have limited exercise capacity and muscle dysfunction characterized by decreased force, atrophy, microvascular abnormalities, fiber distribution changes, and skeletal muscle energetics abnormalities. Growing evidence suggests that in SCD there is alteration in nitric oxide (NO) availability/signaling and that nitrate/nitrite can serve as a NO reservoir and enhance muscle performance. Here, we examined effects of nitrite on muscle strength, exercise capacity, and on contractile properties of fast-(extensor digitorum longus, EDL) and slow-twitch (soleus) muscles in SCD mice. Compared to controls, homozygotes (sickling) had decreased grip strength, impaired wheel running performance, and decreased muscle mass of fast-twitch, but not slow-twitch muscle. Nitrite treatment yielded increases in nitrite plasma levels in controls, heterozygotes, and homozygotes but decreases in muscle nitrite levels in heterozygotes and homozygotes. Regardless of genotype, nitrite yielded increases in grip strength, which were coupled with increases in specific force in EDL, but not in soleus muscle. Further, nitrite increased EDL, but not soleus, fatigability in all genotypes. Conversely, in controls, nitrite decreased, whereas in homozygotes, it increased EDL susceptibility to contraction-induced injury. Interestingly, nitrite yielded no changes in distances ran on the running wheel. These differential effects of nitrite in fast- and slow-twitch muscles suggest that its ergogenic effects would be observed in high-intensity/short exercises as found with grip force increases but no changes on wheel running distances. Further, the differential effects of nitrite in homozygotes and control animals suggests that sickling mice, which have altered NO availability/signaling, handle nitrite differently than do control animals.


Assuntos
Anemia Falciforme/fisiopatologia , Músculo Esquelético/fisiologia , Nitritos/farmacologia , Animais , Creatina Quinase/sangue , Feminino , Masculino , Metemoglobina/análise , Metemoglobina/metabolismo , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Nitritos/sangue , Nitritos/metabolismo , alfa-Globinas/genética
5.
Sci Signal ; 10(495)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874604

RESUMO

Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Oxirredução , Transdução de Sinais , Actinas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo
6.
Hum Mol Genet ; 26(11): 1979-1991, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334824

RESUMO

Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.


Assuntos
Anexina A2/metabolismo , Anexina A2/fisiologia , Adipogenia , Animais , Anexina A2/genética , Disferlina , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Miofibrilas/fisiologia , Sarcolema/metabolismo
7.
Cell Death Differ ; 24(2): 330-342, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27834955

RESUMO

Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic age for dysferlin-deficient mice. Restoring partial dystrophin expression by exon skipping improves mitochondrial function and offers potential to improve myofiber repair. These findings identify that mitochondrial deficit in muscular dystrophy compromises the repair of injured myofibers and show that this repair mechanism is distinct from and complimentary to the dysferlin-mediated repair of injured myofibers.


Assuntos
Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Disferlina/deficiência , Disferlina/genética , Distrofina/antagonistas & inibidores , Distrofina/genética , Distrofina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Ácido Pirúvico/farmacologia , Imagem com Lapso de Tempo
8.
PLoS One ; 11(5): e0155944, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213537

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1ß (IL-1ß) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1ß pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1ß after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1ß with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with inhibitors that completely block IL-1ß, pathways upstream of IL-1ß production or combining various inhibitors may produce more favorable outcomes.


Assuntos
Membro Anterior/fisiopatologia , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Interleucina-1beta/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Membro Anterior/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Atividade Motora/efeitos dos fármacos , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
9.
Hum Mol Genet ; 25(1): 130-45, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26566673

RESUMO

Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits.


Assuntos
Modelos Animais de Doenças , Patrimônio Genético , Distrofia Muscular Animal/genética , Animais , Peso Corporal , Distrofina/genética , Ecocardiografia , Feminino , Força da Mão , Testes de Função Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Contração Muscular , Músculos/patologia , Distrofia Muscular Animal/patologia , Miofibrilas/patologia , Miosite/genética , Miosite/patologia , Tamanho do Órgão , Fenótipo
10.
Sci Rep ; 5: 18246, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667898

RESUMO

Repair and regeneration of the injured skeletal myofiber involves fusion of intracellular vesicles with sarcolemma and fusion of the muscle progenitor cells respectively. In vitro experiments have identified involvement of Annexin A1 (Anx A1) in both these fusion processes. To determine if Anx A1 contributes to these processes during muscle repair in vivo, we have assessed muscle growth and repair in Anx A1-deficient mouse (AnxA1-/-). We found that the lack of Anx A1 does not affect the muscle size and repair of myofibers following focal sarcolemmal injury and lengthening contraction injury. However, the lack of Anx A1 delayed muscle regeneration after notexin-induced injury. This delay in muscle regeneration was not caused by a slowdown in proliferation and differentiation of satellite cells. Instead, lack of Anx A1 lowered the proportion of differentiating myoblasts that managed to fuse with the injured myofibers by days 5 and 7 after notexin injury as compared to the wild type (w.t.) mice. Despite this early slowdown in fusion of Anx A1-/- myoblasts, regeneration caught up at later times post injury. These results establish in vivo role of Anx A1 in cell fusion required for myofiber regeneration and not in intracellular vesicle fusion needed for repair of myofiber sarcolemma.


Assuntos
Anexina A1/deficiência , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Cicatrização/genética , Animais , Fusão Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/genética , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Sarcolema/metabolismo , Sarcolema/ultraestrutura
11.
J Neurol Sci ; 356(1-2): 157-62, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26119397

RESUMO

The dysferlin-deficient A/J mouse strain represents a homologous model for limb-girdle muscular dystrophy 2B. We evaluated the disease phenotype in 10 month old A/J mice compared to two dysferlin-sufficient, C57BL/6 and A/JOlaHsd, mouse lines to determine which functional end-points are sufficiently sensitive to define the disease phenotype for use in preclinical studies in the A/J strain. A/J mice had significantly lower open field behavioral activity (horizontal activity, total distance, movement time and vertical activity) when compared to C57BL/6 and A/JoIaHsd mice. Both A/J and A/JOIaHsd mice showed decreases in latency to fall with rotarod compared to C57BL/6. No changes were detected in grip strength, force measurements or motor coordination between these three groups. Furthermore, we have found that A/J muscle shows significantly increased levels of the pro-inflammatory cytokine TNF-α when compared to C57BL/6 mice, indicating an activation of NF-κB signaling as part of the inflammatory response in dysferlin-deficient muscle. Therefore, we assessed the effect of celastrol (a potent NF-κB inhibitor) on the disease phenotype in female A/J mice. Celastrol treatment for four months significantly reduced the inflammation in A/J muscle; however, it had no beneficial effect in improving muscle function, as assessed by grip strength, open field activity, and in vitro force contraction. In fact, celastrol treated mice showed a decrease in body mass, hindlimb grip strength and maximal EDL force. These findings suggest that inhibition of inflammation alone may not be sufficient to improve the muscle disease phenotype in dysferlin-deficient mice and may require combination therapies that target membrane stability to achieve a functional improvement in skeletal muscle.


Assuntos
Inflamação/tratamento farmacológico , Proteínas de Membrana/deficiência , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Triterpenos/toxicidade , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Disferlina , Ecocardiografia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Triterpenos Pentacíclicos
12.
Hum Mol Genet ; 23(12): 3239-49, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463621

RESUMO

In Duchenne muscular dystrophy (DMD) patients and the mouse model of DMD, mdx, dystrophin deficiency causes a decrease and mislocalization of muscle-specific neuronal nitric oxide synthase (nNOSµ), leading to functional impairments. Previous studies have shown that nitric oxide (NO) donation associated with anti-inflammatory action has beneficial effects in dystrophic mouse models. In this study, we have systematically investigated the effects of naproxcinod, an NO-donating naproxen derivative, on the skeletal and cardiac disease phenotype in mdx mice. Four-week-old mdx and C57BL/10 mice were treated with four different concentrations (0, 10, 21 and 41 mg/kg) of naproxcinod and 0.9 mg/kg of prednisolone in their food for 9 months. All mice were subjected to twice-weekly treadmill sessions, and functional and behavioral parameters were measured at 3, 6 and 9 months of treatment. In addition, we evaluated in vitro force contraction, optical imaging of inflammation, echocardiography and blood pressure (BP) at the 9-month endpoint prior to sacrifice. We found that naproxcinod treatment at 21 mg/kg resulted in significant improvement in hindlimb grip strength and a 30% decrease in inflammation in the fore- and hindlimbs of mdx mice. Furthermore, we found significant improvement in heart function, as evidenced by improved fraction shortening, ejection fraction and systolic BP. In addition, the long-term detrimental effects of prednisolone typically seen in mdx skeletal and heart function were not observed at the effective dose of naproxcinod. In conclusion, our results indicate that naproxcinod has significant potential as a safe therapeutic option for the treatment of muscular dystrophies.


Assuntos
Testes de Função Cardíaca/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Naproxeno/análogos & derivados , Doadores de Óxido Nítrico/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Membro Posterior/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Naproxeno/administração & dosagem , Naproxeno/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Prednisolona/administração & dosagem , Prednisolona/uso terapêutico
13.
J Gerontol A Biol Sci Med Sci ; 69(6): 657-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24077596

RESUMO

Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11-13 months) and 12 oldest old (36-37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia.


Assuntos
Envelhecimento , Neurônios Motores/patologia , Contração Muscular/fisiologia , Músculo Esquelético/inervação , Sarcopenia/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Masculino , Músculo Esquelético/fisiopatologia , Ratos , Ratos Endogâmicos BN , Sarcopenia/patologia
14.
PLoS Curr ; 52013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24270550

RESUMO

Dystrophin deficiency causes contraction-induced injury and damage to the muscle fiber, resulting in sustained increase in intracellular calcium levels, activation of calcium-dependent proteases and cell death. It is known that the Ryanodine receptor (RyR1) on the sarcoplasmic reticular (SR) membrane controls calcium release. Dantrolene, an FDA approved skeletal muscle relaxant, inhibits the release of calcium from the SR during excitation-contraction and suppresses uncontrolled calcium release by directly acting on the RyR complex to limit its activation. This study examines whether Dantrolene can reduce the disease phenotype in the mdx mouse model of muscular dystrophy. We treated mdx mice (4 weeks old) with daily intraperitoneal injections of 40mg/kg of Dantrolene for 6 weeks and measured functional (grip strength, in vitro force contractions), behavioral (open field digiscan), imagining (optical imaging for inflammation), histological (H&E), and molecular (protein and RNA) endpoints in a blinded fashion. We found that treatment with Dantrolene resulted in decreased grip strength and open field behavioral activity in mdx mice. There was no significant difference in inflammation either by optical imaging analysis of cathepsin activity or histological (H&E) analysis. In vitro force contraction measures showed no changes in EDL muscle-specific force, lengthening-contraction force deficit, or fatigue resistance. We found Dantrolene treatment significantly reduces serum CK levels. Further, Dantrolene-treated mice showed decreased SERCA1 but not RyR1 expression in skeletal muscle. These results suggest that Dantrolene treatment alone has no significant beneficial effects at the tested doses in young mdx mice.

15.
Arthritis Rheum ; 65(12): 3248-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022788

RESUMO

OBJECTIVE: Myositis is characterized by severe muscle weakness. We and others have previously shown that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of myositis. The present study was undertaken to identify perturbed pathways and assess their contribution to muscle disease in a mouse myositis model. METHODS: Stable isotope labeling with amino acids in cell culture (SILAC) was used to identify alterations in the skeletal muscle proteome of myositic mice in vivo. Differentially altered protein levels identified in the initial comparisons were validated using a liquid chromatography tandem mass spectrometry spike-in strategy and further confirmed by immunoblotting. In addition, we evaluated the effect of a proteasome inhibitor, bortezomib, on the disease phenotype, using well-standardized functional, histologic, and biochemical assessments. RESULTS: With the SILAC technique we identified significant alterations in levels of proteins belonging to the ER stress response, ubiquitin proteasome pathway (UPP), oxidative phosphorylation, glycolysis, cytoskeleton, and muscle contractile apparatus categories. We validated the myositis-related changes in the UPP and demonstrated a significant increase in the ubiquitination of muscle proteins as well as a specific increase in ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1) in myositis, but not in muscle affected by other dystrophies or normal muscle. Inhibition of the UPP with bortezomib significantly improved muscle function and also significantly reduced tumor necrosis factor α expression in the skeletal muscle of mice with myositis. CONCLUSION: Our findings indicate that ER stress activates downstream UPPs and contributes to muscle degeneration and that UCHL-1 is a potential biomarker for disease progression. UPP inhibition offers a potential therapeutic strategy for myositis.


Assuntos
Músculo Esquelético/metabolismo , Miosite/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Miosite/patologia , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitinação/efeitos dos fármacos
16.
EMBO Mol Med ; 5(10): 1569-85, 2013 10.
Artigo em Inglês | MEDLINE | ID: mdl-24014378

RESUMO

Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Mioblastos/efeitos dos fármacos , Pregnadienodiois/farmacologia , Animais , Anti-Inflamatórios/toxicidade , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Imunossupressores/farmacologia , Imunossupressores/toxicidade , Lasers , Camundongos , Camundongos Endogâmicos mdx , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mioblastos/citologia , Mioblastos/efeitos da radiação , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Necrose/etiologia , Fenótipo , Prednisolona/farmacologia , Prednisolona/toxicidade , Pregnadienodiois/toxicidade , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transcrição Gênica/efeitos dos fármacos
17.
PLoS One ; 8(7): e66617, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843959

RESUMO

BACKGROUND: In Duchenne muscular dystrophy (DMD), loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. METHODOLOGY/PRINCIPAL FINDINGS: We designed a preclinical trial to investigate the effects of lansoprazole (LANZO) administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx) mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group): (1) vehicle control; (2) 5 mg/kg/day LANZO; (3) 5 mg/kg/day prednisolone; and (4) combined treatment of 5 mg/kg/day prednisolone (PRED) and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan) and functional outcomes (grip strength and Rotarod) were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. CONCLUSIONS/SIGNIFICANCE: Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and prednisolone combined treatment regimens in dystrophic pathology.


Assuntos
Distrofina/genética , Lansoprazol/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Inibidores da Bomba de Prótons/farmacologia , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Distrofina/deficiência , Feminino , Expressão Gênica , Glucocorticoides/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Prednisolona/farmacologia
18.
J Pathol ; 231(2): 223-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23794417

RESUMO

The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective glucocorticoid receptor modulation by compound A represents a potential therapeutic strategy to improve dystrophic pathology.


Assuntos
Acetatos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores de Glucocorticoides/agonistas , Tiramina/análogos & derivados , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , NF-kappa B/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Tiramina/farmacologia
19.
PLoS One ; 8(6): e65970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785461

RESUMO

BACKGROUND: Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. RESULTS: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. CONCLUSIONS: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.


Assuntos
Suplementos Nutricionais , Antígenos de Histocompatibilidade Classe I/genética , Miosite/genética , Ribose/farmacologia , AMP Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite/tratamento farmacológico , Ribose/administração & dosagem , Ribose/metabolismo
20.
Skelet Muscle ; 2(1): 19, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22974368

RESUMO

BACKGROUND: Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ). We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD)1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1-/- NMJs. METHODS: Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1-/- mouse skeletal muscle. RESULTS: Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1-/- mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1-4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1-/- mouse skeletal muscle than in wild-type skeletal muscle. CONCLUSION: EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1-/- muscle may be due to functional compensation by other EHD paralogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA