Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924492

RESUMO

Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound Ru-STF31 in the glioblastoma cancer cell line, U87MG. Ru-STF31 targets nicotinamide phosphoribosyltransferase (NAMPT), an enzyme overexpressed in U87MG. Ru-STF31 is activated by red light irradiation and releases two photoproducts: the ruthenium cage and the cytotoxic inhibitor STF31. This study shows that Ru-STF31 can significantly decrease intracellular NAD+ levels in both normoxic (21% O2) and hypoxic (1% O2) U87MG cells. Strikingly, NAD+ depletion by light activation of Ru-STF31 in hypoxic U87MG cells could not be rescued by the addition of extracellular NAD+. Our data suggest an oxygen-dependent active role of the ruthenium photocage released by light activation.

2.
J Exp Clin Cancer Res ; 43(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163893

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS: Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS: Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION: Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
3.
Breast Cancer Res ; 25(1): 51, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147730

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS: Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS: We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION: Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Ciclina-Dependentes/genética , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias
4.
Breast Cancer Res Treat ; 198(3): 583-596, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826702

RESUMO

Hypoxia is linked to disease progression and poor prognosis in several cancers, including breast cancer. Cancer cells can encounter acute, chronic, and/or intermittent periods of oxygen deprivation and it is poorly understood how the different breast cancer subtypes respond to such hypoxia regimes. Here, we assessed the response of representative cell lines for the luminal and basal A subtype to acute (24 h) and chronic hypoxia (5 days). High throughput targeted transcriptomics analysis showed that HIF-related pathways are significantly activated in both subtypes. Indeed, HIF1⍺ nuclear accumulation and activation of the HIF1⍺ target gene CA9 were comparable. Based on the number of differentially expressed genes: (i) 5 days of exposure to hypoxia induced a more profound transcriptional reprogramming than 24 h, and (ii) basal A cells were less affected by acute and chronic hypoxia as compared to luminal cells. Hypoxia-regulated gene networks were identified of which hub genes were associated with worse survival in breast cancer patients. Notably, while chronic hypoxia altered the regulation of the cell cycle in both cell lines, it induced two distinct adaptation programs in these subtypes. Mainly genes controlling central carbon metabolism were affected in the luminal cells whereas genes controlling the cytoskeleton were affected in the basal A cells. In agreement, in response to chronic hypoxia, lactate secretion was more prominently increased in the luminal cell lines which were associated with the upregulation of the GAPDH glycolytic enzyme. This was not observed in the basal A cell lines. In contrast, basal A cells displayed enhanced cell migration associated with more F-actin stress fibers whereas luminal cells did not. Altogether, these data show distinct responses to acute and chronic hypoxia that differ considerably between luminal and basal A cells. This differential adaptation is expected to play a role in the progression of these different breast cancer subtypes.


Assuntos
Neoplasias da Mama , Neoplasia de Células Basais , Humanos , Feminino , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Neoplasia de Células Basais/genética , Hipóxia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
Cancers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139513

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer defined by lack of the estrogen, progesterone and human epidermal growth factor receptor 2. Although TNBC tumors contain a wide variety of oncogenic mutations and copy number alterations, the direct targeting of these alterations has failed to substantially improve therapeutic efficacy. This efficacy is strongly limited by interpatient and intratumor heterogeneity, and thereby a lack in uniformity of targetable drivers. Most of these genetic abnormalities eventually drive specific transcriptional programs, which may be a general underlying vulnerability. Currently, there are multiple selective inhibitors, which target the transcriptional machinery through transcriptional cyclin-dependent kinases (CDKs) 7, 8, 9, 12 and 13 and bromodomain extra-terminal motif (BET) proteins, including BRD4. In this review, we discuss how inhibitors of the transcriptional machinery can effectively target genetic abnormalities in TNBC, and how these abnormalities can influence sensitivity to these inhibitors. These inhibitors target the genomic landscape in TNBC by specifically suppressing MYC-driven transcription, inducing further DNA damage, improving anti-cancer immunity, and preventing drug resistance against MAPK and PI3K-targeted therapies. Because the transcriptional machinery enables transcription and propagation of multiple cancer drivers, it may be a promising target for (combination) treatment, especially of heterogeneous malignancies, including TNBC.

6.
Sci Rep ; 9(1): 13308, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527768

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor clinical prognosis and limited targeted treatment strategies. Kinase inhibitor screening of a panel of 20 TNBC cell lines uncovered three critical TNBC subgroups: 1) sensitive to only MEK inhibitors; 2) sensitive to only Akt inhibitors; 3) resistant to both MEK/Akt inhibitors. Using genomic, transcriptomic and proteomic datasets of these TNBC cell lines we unravelled molecular features associated with the MEK and Akt drug resistance. MEK inhibitor-resistant TNBC cell lines were discriminated from Akt inhibitor-resistant lines by the presence of PIK3CA/PIK3R1/PTEN mutations, high p-Akt and low p-MEK levels, yet these features could not distinguish double-resistant cells. Gene set enrichment analyses of transcriptomic and proteomic data of the MEK and Akt inhibitor response groups revealed a set of cell cycle-related genes associated with the double-resistant phenotype; these genes were overexpressed in a subset of breast cancer patients. CDK inhibitors targeting the cell cycle programme could overcome the Akt and MEK inhibitor double-resistance. In conclusion, we uncovered molecular features and alternative treatment strategies for TNBC that are double-resistant to Akt and MEK inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Feminino , Genes cdc/efeitos dos fármacos , Genes cdc/genética , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , PTEN Fosfo-Hidrolase/genética , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Breast Cancer Res Treat ; 178(2): 263-274, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388935

RESUMO

PURPOSE: Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for effective treatment of the refractory TNBC subtype. METHODS: A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC cells, revealing resistance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. RESULTS: The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment. CONCLUSIONS: mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-targeted therapy resistance in TNBC cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
Breast Cancer Res ; 21(1): 77, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262335

RESUMO

BACKGROUND: The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. METHODS: Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence on such pathways, respectively. A kinase inhibitor combination screen was used to identify compounds that synergised with EGFR-TKIs in TNBC, utilising sulphorhodamine B (SRB) assay as read-out for proliferation. The impact of drug combinations on cell cycle arrest, apoptosis and signal transduction was assessed using flow cytometry, automated live-cell imaging and western blotting, respectively. RNA sequencing was employed to unravel transcriptomic changes elicited by this synergistic combination and to permit identification of the signalling networks most sensitive to co-inhibition. RESULTS: We demonstrate that a dual cdc7/CDK9 inhibitor, PHA-767491, synergises with multiple EGFR-TKIs (lapatinib, erlotinib and gefitinib) to overcome resistance to EGFR-targeted therapy in various TNBC cell lines. Combined inhibition of EGFR and cdc7/CDK9 resulted in reduced cell proliferation, accompanied by induction of apoptosis, G2-M cell cycle arrest, inhibition of DNA replication and abrogation of CDK9-mediated transcriptional elongation, in contrast to mono-inhibition. Moreover, high expression of cdc7 and RNA polymerase II Subunit A (POLR2A), the direct target of CDK9, is significantly correlated with poor metastasis-free survival in a cohort of breast cancer patients. RNA sequencing revealed marked downregulation of pathways governing proliferation, transcription and cell survival in TNBC cells treated with the combination of an EGFR-TKI and a dual cdc7/CDK9 inhibitor. A number of genes enriched in these downregulated pathways are associated with poor metastasis-free survival in TNBC. CONCLUSIONS: Our results highlight that dual inhibition of cdc7 and CDK9 by PHA-767491 is a potential strategy for targeting TNBC resistant to EGFR-TKIs.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade
9.
ACS Cent Sci ; 5(12): 1965-1974, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31893226

RESUMO

Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA