Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 154, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330275

RESUMO

BACKGROUND: The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). RESULTS: As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial ß-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most ß-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. CONCLUSION: We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.


Assuntos
Resistência à Insulina , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Camundongos , Músculo Esquelético/metabolismo
2.
Sci Rep ; 10(1): 16128, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999305

RESUMO

We recently reported that feeding mice in their early life a diet containing a lipid structure more similar to human milk (eIMF, Nuturis) results in lower body weights and fat mass gain upon high fat feeding in later life, compared to control (cIMF). To understand the underlying mechanisms, we now explored parameters possibly involved in this long-term effect. Male C57BL/6JOlaHsd mice, fed rodent diets containing eIMF or cIMF from postnatal (PN) day 16-42, were sacrificed at PN42. Hepatic proteins were measured using targeted proteomics. Lipids were assessed by LC-MS/MS (acylcarnitines) and GC-FID (fatty-acyl chain profiles). Early life growth and body composition, cytokines, and parameters of bile acid metabolism were similar between the groups. Hepatic concentrations of multiple proteins involved in ß-oxidation (+ 17%) the TCA cycle (+ 15%) and mitochondrial antioxidative proteins (+ 28%) were significantly higher in eIMF versus cIMF-fed mice (p < 0.05). Hepatic L-carnitine levels, required for fatty acid uptake into the mitochondria, were higher (+ 33%, p < 0.01) in eIMF-fed mice. The present study indicates that eIMF-fed mice have higher hepatic levels of proteins involved in fatty acid metabolism and oxidation. We speculate that eIMF feeding programs the metabolic handling of dietary lipids.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Leite Humano/metabolismo , Animais , Composição Corporal , Cromatografia Líquida/métodos , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/química , Obesidade/metabolismo , Fosfolipídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
JCI Insight ; 4(11)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31167970

RESUMO

The evolutionary conserved Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is one of the crucial multiprotein complexes that facilitates endosomal recycling of transmembrane proteins. Defects in WASH components have been associated with inherited developmental and neurological disorders in humans. Here, we show that hepatic ablation of the WASH component Washc1 in chow-fed mice increases plasma concentrations of cholesterol in both LDLs and HDLs, without affecting hepatic cholesterol content, hepatic cholesterol synthesis, biliary cholesterol excretion, or hepatic bile acid metabolism. Elevated plasma LDL cholesterol was related to reduced hepatocytic surface levels of the LDL receptor (LDLR) and the LDLR-related protein LRP1. Hepatic WASH ablation also reduced the surface levels of scavenger receptor class B type I and, concomitantly, selective uptake of HDL cholesterol into the liver. Furthermore, we found that WASHC1 deficiency increases LDLR proteolysis by the inducible degrader of LDLR, but does not affect proprotein convertase subtilisin/kexin type 9-mediated LDLR degradation. Remarkably, however, loss of hepatic WASHC1 may sensitize LDLR for proprotein convertase subtilisin/kexin type 9-induced degradation. Altogether, these findings identify the WASH complex as a regulator of LDL as well as HDL metabolism and provide in vivo evidence for endosomal trafficking of scavenger receptor class B type I in hepatocytes.


Assuntos
HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular , Animais , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Receptores Depuradores Classe B/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA