Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 6218, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803032

RESUMO

The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.


Assuntos
Carbono , Florestas , Temperatura , Carbono/análise , Europa (Continente) , Temperatura Alta , Secas , Mudança Climática
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190509, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892721

RESUMO

We analysed gross primary productivity (GPP), total ecosystem respiration (TER) and the resulting net ecosystem exchange (NEE) of carbon dioxide (CO2) by the terrestrial biosphere during the summer of 2018 through observed changes across the Integrated Carbon Observation System (ICOS) network, through biosphere and inverse modelling, and through remote sensing. Highly correlated yet independently-derived reductions in productivity from sun-induced fluorescence, vegetative near-infrared reflectance, and GPP simulated by the Simple Biosphere model version 4 (SiB4) suggest a 130-340 TgC GPP reduction in July-August-September (JAS) of 2018. This occurs over an area of 1.6 × 106 km2 with anomalously low precipitation in northwestern and central Europe. In this drought-affected area, reduced GPP, TER, NEE and soil moisture at ICOS ecosystem sites are reproduced satisfactorily by the SiB4 model. We found that, in contrast to the preceding 5 years, low soil moisture is the main stress factor across the affected area. SiB4's NEE reduction by 57 TgC for JAS coincides with anomalously high atmospheric CO2 observations in 2018, and this is closely matched by the NEE anomaly derived by CarbonTracker Europe (52 to 83 TgC). Increased NEE during the spring (May-June) of 2018 (SiB4 -52 TgC; CTE -46 to -55 TgC) largely offset this loss, as ecosystems took advantage of favourable growth conditions. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Ciclo do Carbono , Carbono/análise , Secas , Dióxido de Carbono/análise , Mudança Climática , Europa (Continente) , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA