Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e12755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111398

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) treatment improves metabolic homeostasis in diverse species, including humans. Physiologically, plasma FGF21 levels increase modestly after glucose ingestion, but it is unclear whether this is mediated by glucose itself or due to a secondary effect of postprandial endocrine responses. A refined understanding of the mechanisms that control FGF21 release in humans may accelerate the development of small-molecule FGF21 secretagogues to treat metabolic disease. This study aimed to determine whether FGF21 secretion is stimulated by elevations in plasma glucose, insulin, or glucagon-like peptide-1 (GLP-1) in humans. METHODS: Three groups of ten healthy participants were included in a parallel-group observational study. Group A underwent a hyperglycemic infusion; Group B underwent a 40 mU/m2/min hyperinsulinemic euglycemic clamp; Group C underwent two pancreatic clamps (to suppress endogenous insulin secretion) with euglycemic and hyperglycemic stages with an infusion of either saline or 0.5 pmol/kg/min GLP-1. Plasma FGF21 concentrations were measured at baseline and during each clamp stage by ELISA. RESULTS: Plasma FGF21 was unaltered during hyperglycemic infusion and hyperinsulinemic euglycemic clamps, compared to baseline. FGF21 was, however, increased by hyperglycemia under pancreatic clamp conditions (P < 0.05), while GLP-1 infusion under pancreatic clamp conditions did not change circulating FGF21 levels. CONCLUSION: Increases in plasma FGF21 are likely driven directly by changes in plasma glucose independent of changes in insulin or GLP-1 secretion. Ecologically valid postprandial investigations are now needed to confirm our observations from basic science infusion models.


Assuntos
Glucose , Insulina , Humanos , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Glicemia , Fragmentos de Peptídeos , Insulina Regular Humana
2.
J Physiol ; 597(14): 3539-3548, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30921473

RESUMO

Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic metabolic effects. Its production is induced by various dietary imbalances in mice (including low-protein and ketogenic diets, fructose feeding and ethanol), hinting that it might influence food preference given the role of the liver in maintaining homeostatic levels of circulating nutrients. In 2016, it was shown that FGF21 selectively inhibits consumption of sugars and the primary product of their fermentation, ethanol, but not intake of fat, protein or complex carbohydrates. Since then, studies have sought to unravel this selectivity, its physiological purpose and translational relevance, as well as delineate the neural mechanisms involved. Initially found to impact ingestive behaviours in mice and non-human primates, FGF21 is also induced in humans by sugars and, far more dramatically, by acute alcohol intake. Genetic studies have revealed that patterns of weekly candy and alcohol consumption are associated with genetic variants in FGF21 and its co-receptor ß-klotho (KLB), suggesting that liking for sugar, and fermented sugar, may be influenced by natural variation in FGF21 signal strength in humans. Herein, we discuss our nascent understanding of FGF21 as a selective negative regulator of sugar and alcohol appetite as well as reasons why such a peculiar system may have evolved in mammals. Uncovering the regulatory network governing sugar, and fermented sugar, intake could provide new opportunities to improve dietary choices in a population suffering from Western diet-induced diseases fuelled in part by a runaway sweet - and alcohol - tooth.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Apetite/fisiologia , Sistema Endócrino/metabolismo , Etanol/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Açúcares/metabolismo , Animais , Dieta/métodos , Humanos , Fígado/metabolismo , Paladar/fisiologia
3.
J Vis Exp ; (135)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29889209

RESUMO

Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).


Assuntos
Encéfalo/cirurgia , Cânula/estatística & dados numéricos , Cateterismo/métodos , Cisterna Magna/cirurgia , Animais , Encéfalo/patologia , Camundongos , Roedores
4.
Neurosci Lett ; 662: 253-258, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079431

RESUMO

Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise.


Assuntos
Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vigília
5.
Cell Metab ; 25(5): 1045-1053.e6, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467924

RESUMO

The liking and selective ingestion of palatable foods-including sweets-is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas knockout of Fgf21 increases sugar consumption in mice. To investigate the relevance of these findings in humans, we genotyped variants in the FGF21 locus in participants from the Danish Inter99 cohort (n = 6,514) and examined their relationship with a detailed range of food and ingestive behaviors. This revealed statistically significant associations between FGF21 rs838133 and increased consumption of candy, as well as nominal associations with increased alcohol intake and daily smoking. Moreover, in a separate clinical study, plasma FGF21 levels increased acutely after oral sucrose ingestion and were elevated in fasted sweet-disliking individuals. These data suggest the liver may secrete hormones that influence eating behavior.


Assuntos
Doces , Fatores de Crescimento de Fibroblastos/genética , Preferências Alimentares , Polimorfismo Genético , Açúcares/metabolismo , Adulto , Apetite , Regulação do Apetite , Estudos de Coortes , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Genótipo , Humanos , Masculino , Obesidade/genética , Obesidade/metabolismo , Paladar , Adulto Jovem
6.
Cell Metab ; 23(2): 335-43, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26724858

RESUMO

The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."


Assuntos
Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Preferências Alimentares/efeitos dos fármacos , Fígado/metabolismo , Sacarose/farmacologia , Paladar/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Sistema Endócrino/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Knockout , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA