Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(50): 12194-12200, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30511863

RESUMO

Many natural and synthetic polymers and particles have a rodlike shape, leading to important and intriguing solution behavior, such as high intrinsic viscosities and liquid crystalline phases. Much of what is known about suspensions of rods has been learned by studying helical polypeptides, even though such molecules are not perfectly rigid, smooth cylinders. Previous optical tracer self-diffusion studies of poly(γ-benzyl-α,l-glutamate) (PBLG) revealed that the molecule initially resists topological constraints imposed by neighboring molecules, but diffusion strongly decreases as concentration rises beyond a certain number density. In contrast, the tracer self-diffusion coefficient of truly rigid tobacco mosaic virus begins decreasing immediately with concentration. We used pulsed gradient spin echo NMR to measure another polypeptide, poly(γ-stearyl-α,l-glutamate) (PSLG), to gain physical insight into the question of polypeptide diffusion in crowded isotropic solutions. The PSLG molecule, with long alkyl sidechains, is semiflexible like PBLG but does not exhibit the same ability to evade topological constraints. Instead, PSLG follows a simple exponential decay, D/ DKR = A e(-κν/ν*) + B, where DKR is the Kirkwood-Riseman expectation for rod diffusion, ν is the number density of rods, ν* is the Onsager expectation for the number density at the onset of liquid crystal formation, A = 1 ± 0.1, B = 0.1 ± 0.01, and κ = 4.5 ± 0.5. The results emphasize the importance of helix stability when choosing rodlike polypeptides as model systems, particularly with regard to the chain ends.

2.
ACS Nano ; 4(7): 3735-42, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20536222

RESUMO

Nanoscale ionic materials (NIMS) are organic-inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA