Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004747

RESUMO

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Assuntos
DNA Ligases , Síndromes de Imunodeficiência , Humanos , DNA Ligases/genética , Autoimunidade/genética , Haploinsuficiência , DNA Ligase Dependente de ATP/genética , Síndromes de Imunodeficiência/genética , Mutação , DNA
2.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971345

RESUMO

Immunoglobulin loci-transgenic animals are widely used in antibody discovery and increasingly in vaccine response modelling. In this study, we phenotypically characterised B-cell populations from the Intelliselect Transgenic mouse (Kymouse) demonstrating full B-cell development competence. Comparison of the naïve B-cell receptor (BCR) repertoires of Kymice BCRs, naïve human, and murine BCR repertoires revealed key differences in germline gene usage and junctional diversification. These differences result in Kymice having CDRH3 length and diversity intermediate between mice and humans. To compare the structural space explored by CDRH3s in each species' repertoire, we used computational structure prediction to show that Kymouse naïve BCR repertoires are more human-like than mouse-like in their predicted distribution of CDRH3 shape. Our combined sequence and structural analysis indicates that the naïve Kymouse BCR repertoire is diverse with key similarities to human repertoires, while immunophenotyping confirms that selected naïve B cells are able to go through complete development.


Assuntos
Anticorpos , Linfócitos B , Animais , Humanos , Camundongos , Camundongos Transgênicos , Imunofenotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos B/genética
3.
Swiss Med Wkly ; 153: 40046, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36800891

RESUMO

T cell receptor repertoire sequencing (TCRseq) has become one of the major omic tools to study the immune system in health and disease. Multiple commercial solutions are currently available, greatly facilitating the implementation of this complex method into translational studies. However, the flexibility of these methods to react to suboptimal sample material is still limited. In a clinical research context, limited sample availability and/or unbalanced sample material can negatively impact the feasibility and quality of such analyses. We sequenced the T cell receptor repertoires of three healthy controls and four patients with GATA2 deficiency using a commercially available TCRseq kit and thereby (1) assessed the impact of suboptimal sample quality and (2) implemented a subsampling strategy to react to biased sample input quantity. Applying these strategies, we did not find significant differences in the global T cell receptor repertoire characteristics such as V and J gene usage, CDR3 junction length and repertoire diversity of GATA2-deficient patients compared with healthy control samples. Our results prove the adaptability of this TCRseq protocol to the analysis of unbalanced sample material and provide encouraging evidence for use of this method in future studies despite suboptimal patient samples.


Assuntos
Fator de Transcrição GATA2 , Receptores de Antígenos de Linfócitos T , Humanos , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-36229189

RESUMO

BACKGROUND AND OBJECTIVES: Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. METHODS: Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. RESULTS: Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. DISCUSSION: Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla , Soro Antilinfocitário , Carmustina , Citarabina , Etoposídeo , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas , Melfalan , Esclerose Múltipla/terapia
5.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661527

RESUMO

Several human B cell subpopulations are recognised in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations.


Assuntos
Linfócitos B/fisiologia , Subpopulações de Linfócitos/fisiologia , Biologia Computacional , Humanos , Imunidade Humoral
6.
Swiss Med Wkly ; 151: w30057, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499459

RESUMO

In anticipation of an interseasonal respiratory syncytial virus (RSV) epidemic, a clinician-led reporting system was rapidly established to capture RSV infections in Swiss hospitals, starting in January 2021. Here, we present details of the reporting system and first results to June 2021. An unusual epidemiology was observed with an interseasonal surge of RSV infections associated with COVID-19-related non-pharmacological interventions. These data allowed real-time adjustment of RSV prophylaxis guidelines and consequently underscore the need for and continuation of systematic nationwide RSV surveillance.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , SARS-CoV-2 , Suíça/epidemiologia
7.
Front Immunol ; 11: 1734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849618

RESUMO

B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced immunoglobulin heavy chain (IgH) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream IgH constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing IgH repertoires and stress the importance of using well-selected, age-appropriate controls in IgH studies.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Genes de Cadeia Pesada de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/imunologia , Mutação , Adolescente , Adulto , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Linfócitos B/metabolismo , Criança , Desenvolvimento Infantil , Pré-Escolar , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Lactente , Pessoa de Meia-Idade , Adulto Jovem
8.
Toxicol Sci ; 169(2): 353-364, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825313

RESUMO

Predicting fish acute toxicity of chemicals in vitro is an attractive alternative method to the conventional approach using juvenile and adult fish. The rainbow trout (Oncorhynchus mykiss) cell line assay with RTgill-W1 cells has been designed for this purpose. It quantifies cell viability using fluorescent measurements for metabolic activity, cell- and lysosomal-membrane integrity on the same set of cells. Results from over 70 organic chemicals attest to the high predictive capacity of this test. We here report on the repeatability (intralaboratory variability) and reproducibility (interlaboratory variability) of the RTgill-W1 cell line assay in a round-robin study focusing on 6 test chemicals involving 6 laboratories from the industrial and academic sector. All participating laboratories were able to establish the assay according to preset quality criteria even though, apart from the lead laboratory, none had previously worked with the RTgill-W1 cell line. Concentration-response modeling, based on either nominal or geometric mean-derived measured concentrations, yielded effect concentrations (EC50) that spanned approximately 4 orders of magnitude over the chemical range, covering all fish acute toxicity categories. Coefficients of variation for intralaboratory and interlaboratory variability for the average of the 3 fluorescent cell viability measurements were 15.5% and 30.8%, respectively, which is comparable to other fish-derived, small-scale bioassays. This study therefore underlines the robustness of the RTgill-W1 cell line assay and its accurate performance when carried out by operators in different laboratory settings.


Assuntos
Testes de Toxicidade Aguda/métodos , Compostos de Anilina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Laboratórios , Oncorhynchus mykiss , Reprodutibilidade dos Testes
9.
Environ Toxicol Chem ; 37(3): 931-941, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105821

RESUMO

Testing for acute fish toxicity is an integral part of the environmental safety assessment of chemicals. A true replacement of primary fish tissue was recently proposed using cell viability in a fish gill cell line (RTgill-W1) as a means of predicting acute toxicity, showing good predictivity on 35 chemicals. To promote regulatory acceptance, the predictivity and applicability domain of novel tests need to be carefully evaluated on chemicals with existing high-quality in vivo data. We applied the RTgill-W1 cell assay to 38 fragrance chemicals with a wide range of both physicochemical properties and median lethal concentration (LC50) values and representing a diverse range of chemistries. A strong correlation (R2 = 0.90-0.94) between the logarithmic in vivo LC50 values, based on fish mortality, and the logarithmic in vitro median effect concentration (EC50) values based on cell viability was observed. A leave-one-out analysis illustrates a median under-/overprediction from in vitro EC50 values to in vivo LC50 values by a factor of 1.5. This assay offers a simple, accurate, and reliable alternative to in vivo acute fish toxicity testing for chemicals, presumably acting mainly by a narcotic mode of action. Furthermore, the present study provides validation of the predictivity of the RTgill-W1 assay on a completely independent set of chemicals that had not been previously tested and indicates that fragrance chemicals are clearly within the applicability domain. Environ Toxicol Chem 2018;37:931-941. © 2017 SETAC.


Assuntos
Bioensaio , Peixes/metabolismo , Odorantes/análise , Testes de Toxicidade Aguda/métodos , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Simulação por Computador , Brânquias/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Análise de Regressão , Relação Estrutura-Atividade
10.
Dev Dyn ; 242(12): 1427-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038627

RESUMO

BACKGROUND: Canonical transient receptor potential (TRPC) channels are nonselective, calcium-permeable cation channels that are expressed in a great variety of organisms, tissues, and cell types. TRPC channels are known to be involved in the transduction of polymodal sensory input. Additionally, they are implicated in a variety of developmental processes. Distinct gating mechanisms have been elucidated so far, but their exact functional role in vertebrate organisms still needs to be resolved. RESULTS: We now used the teleost Danio rerio to perform a comprehensive expression analysis of the trpc gene subfamily. Based on the sequence homology to the seven described mammalian TRPC channels, we identified 12 trpc genes in the zebrafish genome. All but trpc1 and trpc3 are represented by two paralogs. We further describe the specific expression patterns of trpc transcripts in whole-mounts during the first 5 days of development. CONCLUSIONS: Consistent with their proposed role in sensory transduction zebrafish trpcs are predominantly expressed in neural structures such as the olfactory, visual, mechanosensitive, and motor systems. Intriguingly, zebrafish paralogs show mainly nonoverlapping expression patterns, suggesting that duplicated genes have either split their functions or have adapted new ones.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Família Multigênica/genética , Filogenia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Sistema Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Olfato/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA