Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 633(8028): 63-70, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232152

RESUMO

Optical atomic clocks1,2 use electronic energy levels to precisely keep track of time. A clock based on nuclear energy levels promises a next-generation platform for precision metrology and fundamental physics studies. Thorium-229 nuclei exhibit a uniquely low-energy nuclear transition within reach of state-of-the-art vacuum ultraviolet (VUV) laser light sources and have, therefore, been proposed for construction of a nuclear clock3,4. However, quantum-state-resolved spectroscopy of the 229mTh isomer to determine the underlying nuclear structure and establish a direct frequency connection with existing atomic clocks has yet to be performed. Here, we use a VUV frequency comb to directly excite the narrow 229Th nuclear clock transition in a solid-state CaF2 host material and determine the absolute transition frequency. We stabilize the fundamental frequency comb to the JILA 87Sr clock2 and coherently upconvert the fundamental to its seventh harmonic in the VUV range by using a femtosecond enhancement cavity. This VUV comb establishes a frequency link between nuclear and electronic energy levels and allows us to directly measure the frequency ratio of the 229Th nuclear clock transition and the 87Sr atomic clock. We also precisely measure the nuclear quadrupole splittings and extract intrinsic properties of the isomer. These results mark the start of nuclear-based solid-state optical clocks and demonstrate the first comparison, to our knowledge, of nuclear and atomic clocks for fundamental physics studies. This work represents a confluence of precision metrology, ultrafast strong-field physics, nuclear physics and fundamental physics.

2.
Opt Lett ; 47(21): 5591-5594, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219278

RESUMO

Laser spectroscopy of the 229mTh nuclear clock transition is necessary for the future construction of a nuclear-based optical clock. Precision laser sources with broad spectral coverage in the vacuum ultraviolet are needed for this task. Here, we present a tunable vacuum-ultraviolet frequency comb based on cavity-enhanced seventh-harmonic generation. Its tunable spectrum covers the current uncertainty range of the 229mTh nuclear clock transition.

3.
Phys Rev Lett ; 124(19): 192502, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469560

RESUMO

The excitation of the 8 eV ^{229m}Th isomer through the electronic bridge mechanism in highly charged ions is investigated theoretically. By exploiting the rich level scheme of open 4f orbitals and the robustness of highly charged ions against photoionization, a pulsed high-intensity optical laser can be used to efficiently drive the nuclear transition by coupling it to the electronic shell. We show how to implement a promising electronic bridge scheme in an electron beam ion trap starting from a metastable electronic state. This setup would avoid the need for a tunable vacuum ultraviolet laser. Based on our theoretical predictions, determining the isomer energy with an uncertainty of 10^{-5} eV could be achieved in one day of measurement time using realistic laser parameters.

4.
Nature ; 573(7773): 243-246, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511684

RESUMO

Owing to its low excitation energy and long radiative lifetime, the first excited isomeric state of thorium-229, 229mTh, can be optically controlled by a laser1,2 and is an ideal candidate for the creation of a nuclear optical clock3, which is expected to complement and outperform current electronic-shell-based atomic clocks4. A nuclear clock will have various applications-such as in relativistic geodesy5, dark matter research6 and the observation of potential temporal variations of fundamental constants7-but its development has so far been impeded by the imprecise knowledge of the energy of 229mTh. Here we report a direct measurement of the transition energy of this isomeric state to the ground state with an uncertainty of 0.17 electronvolts (one standard deviation) using spectroscopy of the internal conversion electrons emitted in flight during the decay of neutral 229mTh atoms. The energy of the transition between the ground state and the first excited state corresponds to a wavelength of 149.7 ± 3.1 nanometres, which is accessible by laser spectroscopy through high-harmonic generation. Our method combines nuclear and atomic physics measurements to advance precision metrology, and our findings are expected to facilitate the application of high-resolution laser spectroscopy on nuclei and to enable the development of a nuclear optical clock of unprecedented accuracy.

5.
Nature ; 556(7701): 321-325, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670266

RESUMO

The isotope 229Th is the only nucleus known to possess an excited state 229mTh in the energy range of a few electronvolts-a transition energy typical for electrons in the valence shell of atoms, but about four orders of magnitude lower than typical nuclear excitation energies. Of the many applications that have been proposed for this nuclear system, which is accessible by optical methods, the most promising is a highly precise nuclear clock that outperforms existing atomic timekeepers. Here we present the laser spectroscopic investigation of the hyperfine structure of the doubly charged 229mTh ion and the determination of the fundamental nuclear properties of the isomer, namely, its magnetic dipole and electric quadrupole moments, as well as its nuclear charge radius. Following the recent direct detection of this long-sought isomer, we provide detailed insight into its nuclear structure and present a method for its non-destructive optical detection.

6.
Phys Rev Lett ; 118(4): 042501, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186791

RESUMO

The first excited isomeric state of ^{229}Th possesses the lowest energy among all known excited nuclear states. The expected energy is accessible with today's laser technology and in principle allows for a direct optical laser excitation of the nucleus. The isomer decays via three channels to its ground state (internal conversion, γ decay, and bound internal conversion), whose strengths depend on the charge state of ^{229m}Th. We report on the measurement of the internal-conversion decay half-life of neutral ^{229m}Th. A half-life of 7±1 µs has been measured, which is in the range of theoretical predictions and, based on the theoretically expected lifetime of ≈10^{4} s of the photonic decay channel, gives further support for an internal conversion coefficient of ≈10^{9}, thus constraining the strength of a radiative branch in the presence of internal conversion.

7.
Phys Rev Lett ; 119(13): 132503, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341722

RESUMO

Direct laser excitation of the lowest known nuclear excited state in ^{229}Th has been a long-standing objective. It is generally assumed that reaching this goal would require a considerably reduced uncertainty of the isomer's excitation energy compared to the presently adopted value of (7.8±0.5) eV. Here we present a direct laser excitation scheme for ^{229m}Th, which circumvents this requirement. The proposed excitation scheme makes use of already existing laser technology and therefore paves the way for nuclear laser spectroscopy. In this concept, the recently experimentally observed internal-conversion decay channel of the isomeric state is used for probing the isomeric population. A signal-to-background ratio of better than 10^{4} and a total measurement time of less than three days for laser scanning appear to be achievable.

8.
Nature ; 533(7601): 47-51, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147026

RESUMO

Today's most precise time and frequency measurements are performed with optical atomic clocks. However, it has been proposed that they could potentially be outperformed by a nuclear clock, which employs a nuclear transition instead of an atomic shell transition. There is only one known nuclear state that could serve as a nuclear clock using currently available technology, namely, the isomeric first excited state of (229)Th (denoted (229m)Th). Here we report the direct detection of this nuclear state, which is further confirmation of the existence of the isomer and lays the foundation for precise studies of its decay parameters. On the basis of this direct detection, the isomeric energy is constrained to between 6.3 and 18.3 electronvolts, and the half-life is found to be longer than 60 seconds for (229m)Th(2+). More precise determinations appear to be within reach, and would pave the way to the development of a nuclear frequency standard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA