Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564106

RESUMO

Unprecedented opportunities for early stage cancer detection have recently emerged from the characterization of the personalized protein corona (PC), i.e., the protein cloud that surrounds nanoparticles (NPs) upon exposure to a patients' bodily fluids. Most of these methods require "direct characterization" of the PC., i.e., they necessitate protein isolation, identification, and quantification. Each of these steps can introduce bias and affect reproducibility and inter-laboratory consistency of experimental data. To fulfill this gap, here we develop a nanoparticle-enabled blood (NEB) test based on the indirect characterization of the personalized PC by magnetic levitation (MagLev). The MagLev NEB test works by analyzing the levitation profiles of PC-coated graphene oxide (GO) NPs that migrate along a magnetic field gradient in a paramagnetic medium. For the test validation, we employed human plasma samples from 15 healthy individuals and 30 oncological patients affected by four cancer types, namely breast cancer, prostate cancer, colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC). Over the last 15 years prostate cancer, colorectal cancer, and PDAC have continuously been the second, third, and fourth leading sites of cancer-related deaths in men, while breast cancer, colorectal cancer, and PDAC are the second, third and fourth leading sites for women. This proof-of-concept investigation shows that the sensitivity and specificity of the MagLev NEB test depend on the cancer type, with the global classification accuracy ranging from 70% for prostate cancer to an impressive 93.3% for PDAC. We also discuss how this tool could benefit from several tunable parameters (e.g., the intensity of magnetic field gradient, NP type, exposure conditions, etc.) that can be modulated to optimize the detection of different cancer types with high sensitivity and specificity.

2.
ACS Nano ; 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385663

RESUMO

Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr3 NCs (and FAPbBr3 NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr3 nanocubes combined with Fe3O4 or NaGdF4 spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB2, quasi-ternary ABO3, and ABO6 types as well as previously known NaCl, AlB2, and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF4 nanodisks results in the orthorhombic SL resembling CaC2 structure with pairs of CsPbBr3 NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid-air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.

3.
J Phys Chem C Nanomater Interfaces ; 126(8): 4037-4047, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35273676

RESUMO

Electrochemical dealloying has become a standard technique to produce nanoporous network structures of various noble metals, exploiting the selective dissolution of one component from an alloy. While achieving nanoporosity during dealloying has been intensively studied for the prime example of nanoporous Au from a AgAu alloy, dealloying from other noble-metal alloys has been rarely investigated in the scientific literature. Here, we study the evolution of nanoporosity in the electrochemical dealloying process for both CoPd and AgAu alloys using a combination of in situ grazing-incidence small-angle X-ray scattering (GISAXS), kinetic Monte Carlo (KMC) simulations, and scanning transmission electron microscopy (STEM). When comparing dealloying kinetics, we find a more rapid progression of the dealloying front for CoPd and also a considerably slower coarsening of the nanoporous structure for Pd in relation to Au. We argue that our findings are natural consequences of the effectively higher dealloying potential and the higher interatomic binding energy for the CoPd alloy. Our results corroborate the understanding of electrochemical dealloying on the basis of two rate equations for dissolution and surface diffusion and suggest the general applicability of this dealloying mechanism to binary alloys. The present study contributes to the future tailoring of structural size in nanoporous metals for improved chemical surface activity.

4.
Angew Chem Int Ed Engl ; : e202202137, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35274798

RESUMO

This work describes the design and synthesis of a π-conjugated telluro[3,2-ß][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).

5.
J Phys Chem C Nanomater Interfaces ; 126(9): 4483-4494, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35299820

RESUMO

In recent years, many efforts have been devoted to investigating the interaction of nanoparticles (NPs) with lipid biomimetic interfaces, both from a fundamental perspective aimed at understanding relevant phenomena occurring at the nanobio interface and from an application standpoint for the design of novel lipid-nanoparticle hybrid materials. In this area, recent reports have revealed that citrate-capped gold nanoparticles (AuNPs) spontaneously associate with synthetic phospholipid liposomes and, in some cases, self-assemble on the lipid bilayer. However, the mechanistic and kinetic aspects of this phenomenon are not yet completely understood. In this study, we address the kinetics of interaction of citrate-capped AuNP with lipid vesicles of different rigidities (gel-phase rigid membranes on one side and liquid-crystalline-phase soft membranes on the other). The formation of AuNP-lipid vesicle hybrids was monitored over different time and length scales, combining experiments and simulation. The very first AuNP-membrane contact was addressed through molecular dynamics simulations, while the structure, morphology, and physicochemical features of the final colloidal objects were studied through UV-visible spectroscopy, small-angle X-ray scattering, dynamic light scattering, and cryogenic electron microscopy. Our results highlight that the physical state of the membrane triggers a series of events at the colloidal length scale, which regulate the final morphology of the AuNP-lipid vesicle adducts. For lipid vesicles with soft membranes, the hybrids appear as single vesicles decorated by AuNPs, while more rigid membranes lead to flocculation with AuNPs acting as bridges between vesicles. Overall, these results contribute to a mechanistic understanding of the adhesion or self-assembly of AuNPs onto biomimetic membranes, which is relevant for phenomena occurring at the nano-bio interfaces and provide design principles to control the morphology of lipid vesicle-inorganic NP hybrid systems.

6.
Chemistry ; 28(23): e202200276, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35218252

RESUMO

A series of non-fullerene acceptors based on perylene monoimides coupled in the peri position through phenylene linkers were synthesized via Suzuki-coupling reactions. Various substitution patterns were investigated using density functional theory (DFT) calculations in combination with experimental data to elucidate the geometry and their optical and electrochemical properties. Further investigations of the bulk properties with grazing incidence wide angle X-ray scattering (GIWAXS) gave insight into the stacking behavior of the acceptor thin films. Electrochemical and morphological properties correlate with the photovoltaic performance of devices with the polymeric donor PBDB-T and a maximum efficiency of 3.17 % was reached. The study gives detailed information about structure-property relationships of perylene-linker-perylene compounds.

7.
Biomacromolecules ; 23(3): 1148-1157, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225593

RESUMO

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.


Assuntos
Celulose , Água , Celulose/química , Umidade , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Água/química
8.
Nanoscale ; 14(5): 1706-1712, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043816

RESUMO

Noble metal coordination xerogel films (mesostructured with block-copolymers) exhibit solubility switching with increasing X-ray irradiation. Different from other sol-gel systems, these are attributed to film deconstruction under irradiation. These materials can be used as recyclable negative tone resists for deep X-ray lithography that can be further converted into metallic nanoarchitectured films.

9.
ACS Nano ; 16(2): 2088-2100, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040637

RESUMO

For several decades, surface grafted polyethylene glycol (PEG) has been a go-to strategy for preserving the synthetic identity of liposomes in physiological milieu and preventing clearance by immune cells. However, the limited clinical translation of PEGylated liposomes is mainly due to the protein corona formation and the subsequent modification of liposomes' synthetic identity, which affects their interactions with immune cells and blood residency. Here we exploit the electric charge of DNA to generate unPEGylated liposome/DNA complexes that, upon exposure to human plasma, gets covered with an opsonin-deficient protein corona. The final product of the synthetic process is a biomimetic nanoparticle type covered by a proteonucleotidic corona, or "proteoDNAsome", which maintains its synthetic identity in vivo and is able to slip past the immune system more efficiently than PEGylated liposomes. Accumulation of proteoDNAsomes in the spleen and the liver was lower than that of PEGylated systems. Our work highlights the importance of generating stable biomolecular coronas in the development of stealth unPEGylated particles, thus providing a connection between the biological behavior of particles in vivo and their synthetic identity.


Assuntos
Lipossomos , Coroa de Proteína , Humanos , Proteínas Opsonizantes , Polietilenoglicóis
10.
Life (Basel) ; 12(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35054516

RESUMO

Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.

11.
Small ; 18(5): e2104204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821023

RESUMO

Noble metal nanostructured films are of great interest for various applications including electronics, photonics, catalysis, and photocatalysis. Yet, structuring and patterning noble metals, especially those of the platinum group, is challenging by conventional nanofabrication. Herein, an approach based on solution processing to obtain metal-based films (rhodium, ruthenium (Ru) or iridium in the presence of residual organic species) with nanostructuration at the 20 nm-scale is introduced. Compared to existing approaches, the dual functionality of block-copolymers acting both as structuring and as reducing agent under inert atmosphere is exploited. A set of in situ techniques has allowed for the capturing of the carbothermal reduction mechanism occurring at the hybrid organic/inorganic interface. Differently from previous literature, a two-step reduction mechanism is unveiled with the formation of a carbonyl intermediate. From a technological point of view, the materials can be solution-processed on a large scale by dip-coating as polymers and simultaneously structured and reduced into metals without requiring expensive equipment or treatments in reducing atmosphere. Importantly, the metal-based films can be patterned directly by block-copolymer lithography or by soft-nanoimprint lithography on various substrates. As proof-of-concept of application, the authors demonstrate that nanostructured Ru films can be used as efficient catalysts for H2 generation into microfluidic reactors.


Assuntos
Nanoestruturas , Polímeros , Catálise , Metais , Impressão
12.
Small ; 18(5): e2104211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825488

RESUMO

Growing concerns of bacterial resistance against conventional antibiotics shifts the research focus toward antimicrobial peptide (AMP)-based materials. Most AMPs kill gram-negative bacteria by destroying their inner membrane, but have to first pass the outer membrane covered with lipopolysaccharides (LPS). Their interplay with the LPS is crucial for bactericidal activity, but is yet to be elucidated in detail. In this study, self-assemblies of Escherichia coli LPS with the human cathelicidin AMP LL-37, free and encapsulated into glyceryl monooleate (GMO) lipid nanoparticles, are analyzed using synchrotron small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. Circular dichroism spectroscopy is used to study modifications in LL-37's secondary structure. LPS is found to form elongated micelles and the addition of LL-37 induces their transformation to multilamellar structures. LPS' addition to GMO cubosomes triggers the swelling of the internal cubic structure, while in multilamellar GMO/LL-37 nanocarriers it causes transitions into unstructured particles. The insights on the interactions among LPS and LL-37, in its free form or encapsulated in GMO dispersions, may guide the design of LPS-responsive antimicrobial nanocarriers. The findings may further assist the formulation of antimicrobial nanomaterials with enhanced penetration of LPS layers for improved destruction of bacterial membranes.


Assuntos
Lipopolissacarídeos , Bactérias , Humanos , Lipossomos , Nanopartículas
13.
Adv Mater ; : e2106607, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34866253

RESUMO

Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.

14.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680304

RESUMO

Pancreatic Ductal Adeno Carcinoma (PDAC) is one of the most lethal malignancies worldwide, and the development of sensitive and specific technologies for its early diagnosis is vital to reduce morbidity and mortality rates. In this proof-of-concept study, we demonstrate the diagnostic ability of magnetic levitation (MagLev) to detect PDAC by using levitation of graphene oxide (GO) nanoparticles (NPs) decorated by a biomolecular corona of human plasma proteins collected from PDAC and non-oncological patients (NOP). Levitation profiles of corona-coated GO NPs injected in a MagLev device filled with a paramagnetic solution of dysprosium(III) nitrate hydrate in water enables to distinguish PDAC patients from NOP with 80% specificity, 100% sensitivity, and global classification accuracy of 90%. Our findings indicate that Maglev could be a robust and instrumental tool for the early detection of PDAC and other cancers.

15.
Nanoscale ; 13(30): 13158, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477799

RESUMO

Correction for 'Structural insights into fusion mechanisms of small extracellular vesicles with model plasma membranes' by Fabio Perissinotto et al., Nanoscale, 2021, 13, 5224-5233, DOI: .


Assuntos
Vesículas Extracelulares , Membrana Celular
16.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452253

RESUMO

In recent years, lipid nanoparticles (LNPs) have gained considerable attention in numerous research fields ranging from gene therapy to cancer immunotherapy and DNA vaccination. While some RNA-encapsulating LNP formulations passed clinical trials, DNA-loaded LNPs have been only marginally explored so far. To fulfil this gap, herein we investigated the effect of several factors influencing the microfluidic formulation and transfection behavior of DNA-loaded LNPs such as PEGylation, total flow rate (TFR), concentration and particle density at the cell surface. We show that PEGylation and post-synthesis sample concentration facilitated formulation of homogeneous and small size LNPs with high transfection efficiency and minor, if any, cytotoxicity on human Embryonic Kidney293 (HEK-293), spontaneously immortalized human keratinocytes (HaCaT), immortalized keratinocytes (N/TERT) generated from the transduction of human primary keratinocytes, and epidermoid cervical cancer (CaSki) cell lines. On the other side, increasing TFR had a detrimental effect both on the physicochemical properties and transfection properties of LNPs. Lastly, the effect of particle concentration at the cell surface on the transfection efficiency (TE) and cell viability was largely dependent on the cell line, suggesting that its case-by-case optimization would be necessary. Overall, we demonstrate that fine tuning formulation and microfluidic parameters is a vital step for the generation of highly efficient DNA-loaded LNPs.

17.
Micromachines (Basel) ; 12(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202530

RESUMO

Mesoporous materials bear great potential for biotechnological applications due to their biocompatibility and versatility. Their high surface area and pore interconnection allow the immobilization of molecules and their subsequent controlled delivery. Modifications of the mesoporous material with the addition of different chemical species, make them particularly suitable for the production of bioactive coatings. Functionalized thin films of mesoporous silica and titania can be used as scaffolds with properties as diverse as promotion of cell growth, inhibition of biofilms formation, or development of sensors based on immobilized enzymes. The possibility to pattern them increase their appeal as they can be incorporated into devices and can be tailored both with respect to architecture and functionalization. In fact, selective surface manipulation is the ground for the fabrication of advanced micro devices that combine standard micro/nanofluids with functional materials. In this review, we will present the advantages of the functionalization of silica and titania mesoporous materials deposited in thin film. Different functional groups used to modify their properties will be summarized, as well as functionalization methods and some examples of applications of modified materials, thus giving an overview of the essential role of functionalization to improve the performance of such innovative materials.

18.
Small ; 17(35): e2102211, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278713

RESUMO

An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.


Assuntos
Nanopartículas , Fosfatos , Animais , Camundongos , Nanopartículas/toxicidade , Poliaminas/toxicidade , Polietilenoglicóis , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
J Colloid Interface Sci ; 602: 415-425, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34144300

RESUMO

Formation of high viscous inverse lyotropic liquid crystalline phases in situ upon exposure of low viscous drug-loaded lipid preformulations to synovial fluid provides a promising approach for design of depot formulations for intra-articular drug delivery. Rational formulation design relies on a fundamental understanding of the synovial fluid-mediated dynamic structural transitions occurring at the administration site. At conditions mimicking the in vivo situation, we investigated in real-time such transitions at multiple positions by synchrotron small-angle X-ray scattering (SAXS) combined with an injection-cell. An injectable diclofenac-loaded quaternary preformulation consisting of 72/8/10/10% (w/w) glycerol monooleate/1,2-dioleoyl-glycero-3-phospho-rac-(1-glycerol)/ethanol/water was injected into hyaluronic acid solution or synovial fluid. A fast generation of a coherent drug depot of inverse bicontinuous Im3m and Pn3m cubic phases was observed. Through construction of 2D spatial maps from measurements performed 60 min after injection of the preformulation, it was possible to differentiate liquid crystalline rich- and excess hyaluronic acid solution- or synovial fluid-rich regimes. Synchrotron SAXS findings confirmed that the exposure of the preformulation to the media leads to alterations in structural features in position- and time-dependent manners. Effects of biologically relevant medium composition on the structural features, and implications for development of formulations with sustained drug release properties are highlighted.


Assuntos
Cristais Líquidos , Liberação Controlada de Fármacos , Lipídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Nature ; 593(7860): 535-542, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34040208

RESUMO

Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra1-3, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes4,5, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices6. Caesium lead halide perovskite nanocrystals7-9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons10, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines11,12. So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals13. Here we present perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe3O4 or NaGdF4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO3 superlattices, as well as the binary NaCl and AlB2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr3 nanocubes. They also exhibit superfluorescence-a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA