Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(13): 2831-2840.e2, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38866006

RESUMO

A complex brain is central to the success of backboned animals. However, direct evidence bearing on vertebrate brain evolution comes almost exclusively from extant species, leaving substantial knowledge gaps. Although rare, soft-tissue preservation in fossils can yield unique insights on patterns of neuroanatomical evolution. Paleontological evidence from an exceptionally preserved Pennsylvanian (∼318 Ma) actinopterygian, Coccocephalus, calls into question prior interpretations of ancestral actinopterygian brain conditions. However, the ordering and timing of major evolutionary innovations, such as an everted telencephalon, modified meningeal tissues, and hypothalamic inferior lobes, remain unclear. Here, we report two distinct actinopterygian morphotypes from the latest Carboniferous-earliest Permian (∼299 Ma) of Brazil that show extensive soft-tissue preservation of brains, cranial nerves, eyes, and potential cardiovascular tissues. These fossils corroborate inferences drawn from ✝Coccocephalus, while adding new information about neuroanatomical evolution. Skeletal features indicate that one of these Brazilian morphotypes is more closely related to living actinopterygians than the other, which is also reflected in soft-tissue features. Significantly, the more crownward morphotype shows a key neuroanatomical feature of extant actinopterygians-an everted telencephalon-that is absent in the other morphotype and ✝Coccocephalus. All preserved Paleozoic actinopterygian brains show broad similarities, including an invaginated cerebellum, hypothalamus inferior lobes, and a small forebrain. In each case, preserved brains are substantially smaller than the enclosing cranial chamber. The neuroanatomical similarities shared by this grade of Permo-Carboniferous actinopterygians reflect probable primitive conditions for actinopterygians, providing a revised model for interpreting brain evolution in a major branch of the vertebrate tree of life.


Assuntos
Evolução Biológica , Encéfalo , Peixes , Fósseis , Animais , Fósseis/anatomia & histologia , Encéfalo/anatomia & histologia , Peixes/anatomia & histologia , Peixes/fisiologia , Brasil
2.
Nature ; 614(7948): 486-491, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725931

RESUMO

Brain anatomy provides key evidence for the relationships between ray-finned fishes1, but two major limitations obscure our understanding of neuroanatomical evolution in this major vertebrate group. First, the deepest branching living lineages are separated from the group's common ancestor by hundreds of millions of years, with indications that aspects of their brain morphology-like other aspects of their anatomy2,3-are specialized relative to primitive conditions. Second, there are no direct constraints on brain morphology in the earliest ray-finned fishes beyond the coarse picture provided by cranial endocasts: natural or virtual infillings of void spaces within the skull4-8. Here we report brain and cranial nerve soft-tissue preservation in Coccocephalus wildi, an approximately 319-million-year-old ray-finned fish. This example of a well-preserved vertebrate brain provides a window into neural anatomy deep within ray-finned fish phylogeny. Coccocephalus indicates a more complicated pattern of brain evolution than suggested by living species alone, highlighting cladistian apomorphies1 and providing temporal constraints on the origin of traits uniting all extant ray-finned fishes1,9. Our findings, along with a growing set of studies in other animal groups10-12, point to the importance of ancient soft tissue preservation in understanding the deep evolutionary assembly of major anatomical systems outside of the narrow subset of skeletal tissues13-15.


Assuntos
Evolução Biológica , Encéfalo , Peixes , Fósseis , Animais , Encéfalo/anatomia & histologia , Peixes/anatomia & histologia , Filogenia , Crânio , Nervos Cranianos/anatomia & histologia
3.
J Anat ; 242(3): 525-534, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36434746

RESUMO

Though Paleozoic ray-finned fishes are considered to be morphologically conservative, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside the jaw) in the Permian actinopterygian †Brazilichthys macrognathus, whereby the teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand how fishes have accommodated lower jaw fangs through geologic time, we synthesize the multitude of ways living and extinct osteichthyans have housed large mandibular dentition. While the precise structure of fang accommodation seen in †Brazilichthys has not been reported in any other osteichthyans, alternate strategies of upper jaw fenestration to fit mandibular fangs are present in some extant ray-finned fishes-the needlejaws Acestrorhynchus and the gars of the genus Lepisosteus. Notably, out of our survey, only the two aforementioned neopterygians bear upper jaw fenestration for the accommodation of mandibular fangs. We implicate the kinetic jaws of neopterygians in this trend, whereby large mandibular fangs are more easily fit between the multitude of upper jaw and palatal bones. The restricted space available in early osteichthyan jaws may have led to a proliferation of novel ways to accommodate large dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphology, in light of these results and other recent reevaluations of jaw structure in early fossil ray-fins.


Assuntos
Dente , Animais , Dente/anatomia & histologia , Peixes/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Maxila/anatomia & histologia , Mandíbula/anatomia & histologia , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA