Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
World J Methodol ; 12(3): 113-121, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35721240

RESUMO

BACKGROUND: Nursing officers are an integral component of any medical team. They participate in taking care of basic airway management and assist in advanced airway management, specifically amidst the current coronavirus disease 2019 (COVID-19) pandemic. AIM: To assess the efficacy of a standardized web-based training module for nurses in preparedness to fight against COVID-19. METHODS: The training was held in three sessions of 1 h each, consisting of live audio-visual lectures, case scenarios, and skill demonstrations. The sequence of airway equipment, drug preparation, airway examination, and plans of airway management was demonstrated through mannequin-based video-clips. RESULTS: Pre- and post-test scores as well as objective structured clinical examination scores were analyzed using Student's t-test and the Likert scale was used for feedback assessment. It was found that the mean score out of the total score of 20 was 8.47 ± 4.2 in the pre-test, while in the post-test it was 17.4 ± 1.8 (P value < 0.001). The participants also felt self-reliant in executing the roles of airway assistant (63.3%) and drug assistant (74.3%). Fear of self-infection with COVID-19 was also high, as 66% of participants feared working with the patient's airway. CONCLUSION: Amidst this COVID-19 emergency, when the health care systems are being persistently challenged, training of nursing staff in the safe conduct of airway management can ensure delivery of life-saving treatment.

2.
Gels ; 8(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621548

RESUMO

Vitamin D deficiency distresses nearly 50% of the population globally and multiple studies have highlighted the association of Vitamin D with a number of clinical manifestations, including musculoskeletal, cardiovascular, cerebrovascular, and neurological disorders. In the current study, vitamin D oil-in-water (O/W) nanoemulsions were developed and incorporated in edible gummies to enhance bioavailability, stability, and patient compliance. The spontaneous emulsification method was employed to produce a nano-emulsion using corn oil with tween 20 and lecithin as emulsifiers. Optimization was carried out using pseudo-ternary phase diagrams and the average particle size and polydispersity index (PDI) of the optimized nanoemulsion were found to be 118.6 ± 4.3 nm and 0.11 ± 0.30, respectively. HPLC stability analysis demonstrated that the nano-emulsion prevented the degradation and it retained more than 97% of active vitamin D over 15 days compared to 94.5% in oil solution. Similar results were obtained over further storage analysis. Vitamin D gummies based on emulsion-based gelled matrices were then developed using gelatin as hydrocolloid and varying quantities of corn oil. Texture analysis revealed that gummies formulated with 10% corn oil had the optimum hardness of 3095.6 ± 201.7 g on the first day which remained consistent on day 45 with similar values of 3594.4 ± 210.6 g. Sensory evaluation by 19 judges using the nine-point hedonic scale highlighted that the taste and overall acceptance of formulated gummies did not change significantly (p > 0.05) over 45 days storage. This study suggested that nanoemulsions consistently prevent the environmental degradation of vitamin D, already known to offer protection in GI by providing sustained intestinal release and enhancing overall bioavailability. Soft chewable matrices were easy to chew and swallow, and they provided greater patient compliance.

3.
Pharmaceutics ; 14(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456590

RESUMO

Cerium oxide nanoparticles (CNPs), owing to their antioxidant property, have recently emerged as therapeutic candidate for Alzheimer's disease (AD). However, intravenous CNPs are limited due to their poor physicochemical properties, rapid blood clearance and poor blood-brain penetration. Thus, we developed intranasal CNPs and evaluated its potential in experimental AD. CNPs were synthesized using homogenous precipitation method and optimized through Box-Behnken Design. The formation of CNPs was confirmed by UV spectroscopy and FTIR. The optimized CNP were spherical, small (134.0 ± 3.35 nm), uniform (PDI, 0.158 ± 0.0019) and stable (ZP, -21.8 ± 4.94 mV). The presence of Ce in CNPs was confirmed by energy-dispersive X-ray analysis. Further, the X-ray diffraction spectra revealed that the CNPs were nano-crystalline. The DPPH assay showed that at concentration of 50 µg/mL, the percentage radical scavenging was 95.40 ± 0.006%. Results of the in vivo behavioral studies in the scopolamine-induced Alzheimer rat model showed that intranasal CNPs dose dependently reversed cognitive ability. At dose of 6 mg/kg the morris water maze results (escape latency, path length and dwell time) and passive avoidance results (retention latency) were significantly different from untreated group but not significantly different from positive control group (rivastigmine patch, 13.3 mg/24 h). Further, biochemical estimation showed that intranasal CNP upregulated the levels of SOD and GSH in brain. In conclusion, intranasal CNPs, through its antioxidant effect, could be a prospective therapeutics for the treatment of cognitive impairment in AD.

4.
J Funct Biomater ; 13(1)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323228

RESUMO

Bone is a complex hierarchical tissue composed of organic and inorganic materials that provide structure, support, and protection to organs. However, there are some critical size defects that are unable to regenerate on their own and therefore require clinical repair. Bone graft substitutes allow repair by providing a temporary resorbable device. Among the common filler materials that aid in regeneration is hydroxyapatite particles of either animal or human origin which is used to fill or reconstruct periodontal and bony defects in the mouth. However, particulate graft substitutes suffer from localized migration away from the implantation site, necessitating the use of a barrier membrane. In this study, we designed InterOss Collagen, combining bovine hydroxyapatite granules with porcine-skin derived collagen to form a bone filler composite. Physiochemical properties of InterOss Collagen and a commercially available product, OsteoConductive Substitute-Bovine (OCS-B) Collagen, referred to as OCS-B Collagen, were examined. We found two bone graft substitutes to be mostly similar, though InterOss Collagen showed comparatively higher surface area and porosity. We conducted an in vivo study in rabbits to evaluate local tissue responses, percent material resorption and bone formation and showed that the two materials exhibited similar degradation profiles, inflammatory and healing responses following implantation. Based on these results, InterOss Collagen is a promising dental bone grafting material for periodontal and maxillofacial surgeries.

5.
J Drug Target ; : 1-17, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35321629

RESUMO

Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimising the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.

6.
Nanomaterials (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055257

RESUMO

Phytopharmaceuticals have been widely used globally since ancient times and acknowledged by healthcare professionals and patients for their superior therapeutic value and fewer side-effects compared to modern medicines. However, phytopharmaceuticals need a scientific and methodical approach to deliver their components and thereby improve patient compliance and treatment adherence. Dose reduction, improved bioavailability, receptor selective binding, and targeted delivery of phytopharmaceuticals can be likely achieved by molding them into specific nano-formulations. In recent decades, nanotechnology-based phytopharmaceuticals have emerged as potential therapeutic candidates for the treatment of various communicable and non-communicable diseases. Nanotechnology combined with phytopharmaceuticals broadens the therapeutic perspective and overcomes problems associated with plant medicine. The current review highlights the therapeutic application of various nano-phytopharmaceuticals in neurological, cardiovascular, pulmonary, and gastro-intestinal disorders. We conclude that nano-phytopharmaceuticals emerge as promising therapeutics for many pathological conditions with good compliance and higher acceptance.

7.
Clin Transl Med ; 12(1): e692, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090094

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process. METHODS: Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies. RESULTS: Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function. CONCLUSIONS: This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.


Assuntos
Mesencéfalo/patologia , Terapia de Alvo Molecular/métodos , Doença de Parkinson/terapia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Mesencéfalo/anatomia & histologia , Mesencéfalo/efeitos dos fármacos , Pessoa de Meia-Idade , Terapia de Alvo Molecular/estatística & dados numéricos , Doença de Parkinson/genética , Doença de Parkinson/mortalidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , Reino Unido
8.
J Chromatogr Sci ; 60(4): 364-371, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34080615

RESUMO

Borage oil that is extracted from (Borago officinalis Linn.) is a well-known medicinal plant having various medicinal benefits. In this work, an affordable, simple, reliable, rapid and easily accessible high-performance thin-layer chromatography (HPTLC) method was developed for the estimation of gamma-linolenic acid (GLA) in borage oil. HPTLC method employs thin-layer chromatography (TLC) aluminum plates precoated with silica gel (G60F254) as the stationary phase, and the mixture of hexane:toulene:glacial acetic acid (3:7:1, v/v/v) was used as the mobile phase. Densitometric analysis of the TLC plates was carried out at 200 nm. The developed method showed well-resolved spots with retention factor (Rf) value of 0.53 ± 0.04 for GLA. Various experimental conditions like saturation time for chamber, solvent phase migration and width of the band were studied intensely for selecting the optimum conditions. The method validation was performed for parameters like linearity, accuracy, specificity and precision. The values of limit of detection and limit of quantification for GLA were found to be 0.221 and 0.737 µg/band, respectively. In nutshell, the developed HPTLC method was found to be highly sensitive for the estimation of GLA in the herbal oil samples and formulations.


Assuntos
Antioxidantes , Ácido gama-Linolênico , Cromatografia em Camada Delgada/métodos , Óleos Vegetais
9.
Blood ; 139(8): 1184-1197, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33908607

RESUMO

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Estresse Fisiológico , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
10.
J Biomater Sci Polym Ed ; 33(1): 110-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464232

RESUMO

The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.


Assuntos
Antivirais/farmacologia , COVID-19 , Reposicionamento de Medicamentos , Excipientes/farmacologia , COVID-19/tratamento farmacológico , Humanos , Pandemias , Estudos Prospectivos , RNA Viral , SARS-CoV-2/efeitos dos fármacos
11.
J Pharm Sci ; 111(2): 479-484, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34599998

RESUMO

The present work aimed to evaluate the efficacy of topical tacrolimus (0.01%) loaded propylene glycol (PG) modified nano-vesicles (Proglycosomes Nano-vesicles, PNVs) for the treatment of experimental dry eye syndrome (DES) in rabbits. DES was induced by topical application of atropine (1.0%) and benzalkonium chloride (0.1%) aqueous solution. PNVs treatment (PNV group) was compared with tacrolimus solution 0.01% (TAC group) and untreated group and healthy group were used as controls. PNV treated animals showed improved clinical performance with marked increase in tear production and tear break-up time (TBUT). Further, PNVs also subside ocular inflammation as evident from absence of matrix metalloprotenaise-9 and normal ocular surface temperature (32.3 ± 0.34 °C). Additionally, PNVs have positive effect on ocular and epithelial damage observed through low ocular surface staining score and improved globlet cell density. The PNV treatment was found to more effectively compared to TAC solution and most of the parameters were close to those of healthy animals. In conclusion, tacrolimus PNV formulation (0.01%) could be a potential therapy for treatment of dry eye syndrome.


Assuntos
Síndromes do Olho Seco , Tacrolimo , Animais , Síndromes do Olho Seco/tratamento farmacológico , Inflamação , Propilenoglicol , Coelhos , Lágrimas
12.
Anticancer Agents Med Chem ; 22(3): 515-550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34674627

RESUMO

BACKGROUND: Triple-Negative Breast Cancer (TNBC) is the most aggressive form of Breast Cancer (BC), with high rates of metastasis and recurrence and limited treatment options. Chemotherapy and radiotherapy, for example, have several harmful side effects, and no FDA-approved therapies are currently available. Repurposing old clinically approved drugs to target various TNBC targets is a novel method that has fewer side effects and leads to successful, low-cost drug development in a shorter amount of time. Medicinal plants containing various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tannins, glycosides, lactones) play a very crucial role in combating various types of diseases and are used in the drug development process because of having lesser side effects. OBJECTIVE: The present review summarizes various categories of repurposed drugs that target multiple targets of TNBC, as well as phytochemical categories that target TNBC singly or in combination with old synthetic drugs. METHODS: Literature information was collected from various databases such as Pubmed, Web of Science, Scopus, and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents against TNBC by using keywords like "breast cancer", "repurposed drugs", "TNBC" and "phytoconstituents". RESULTS: Various repurposed drugs and phytochemicals that target different signaling pathways and exert their cytotoxic activities on TNBC cells ultimately lead to cell apoptosis, reducing the recurrence rate and stopping the metastasis process. CONCLUSION: Inhibitory effects can be seen at various levels, providing information and evidence to researchers in the drug development process. As a result, more research and investigations are needed to develop better therapeutic treatment options for TNBC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos , Neoplasias de Mama Triplo Negativas/patologia
13.
J Oral Biol Craniofac Res ; 12(1): 22-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34745860

RESUMO

BACKGROUND/PURPOSE: This research aimed to compare the effects of systemically prescribed Lycopene as a monotherapy and as an alternative to scaling and root planing in patients with chronic gingivitis. MATERIALS AND METHODS: The participants were randomly assigned to one of two treatment groups: the experimental group (n = 50), which received 10 mg of Lycopene a day for two weeks, or the control group (n = 50) received a placebo for two weeks. For each category, quadrant distribution was randomized, with two quadrants receiving oral prophylaxis (OP) and two quadrants receiving no care (non-OP). At baseline, 1st, and 2nd weeks, the sulcus bleeding index, plaque index, gingival index, and salivary uric acid level were measured. RESULTS: All clinical criteria, including SBI, PI, GI, and salivary uric acid levels, showed a statistically significant decline in all patient types. Both clinical parameters were significantly reduced (p < 0.001) in the OP-lycopene group relative to the non-OP-placebo group and non-OP lycopene group (p < 0.05). The PI value in the OP-lycopene group was statistically significantly lower (p < 0.001) than in the non-OP-placebo group; there was no statistically significant difference in the other groups. Salivary uric acid levels in the OP- and non-OP- lycopene groups were significantly lower (p < 0.001) than in the non-OP-placebo population. CONCLUSION: Based on the findings of this study, Lycopene seems to have a bright future as a treatment option for plaque-induced generalized chronic marginal gingivitis. More research with a broad sample size and multicentre trials is required. CLINICAL RELEVANCE: The article reveals the positive relationship between Lycopene and gingivitis. The analysis shows that a combination of systemically administered Lycopene with oral prophylaxis can be a valuable tool in treating chronic gingivitis and controlling respiratory oxidative stress.

14.
Colloids Surf B Biointerfaces ; 211: 112255, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34942465

RESUMO

The present study aimed at the development and evaluation of tacrolimus gellan gum nanoparticles (TGNPs) for the effective management of dry eye disease (DED) following topical application. TGNPs were developed by ionotropic gelation between gellan gum and aluminum chloride. Developed TGNPs were nanosized (274.46 ± 8.90 nm) with high % encapsulation efficiency (74.2 ± 2.4%) and loading capacity (36.14 ± 1.7%). The nanosize and spherical morphology of TGNPs was confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) revealed no interaction between drug and GG. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirms the conversion of crystalline tacrolimus to amorphous post encapsulation in the nanoparticle. TGNPs showed prolonged drug release throughout 12 h and higher pre-corneal retention compared to tacrolimus solution. HET-CAM studies, histopathological evaluation, and Draize test confirmed the safety of the formulation for ocular use. Further, the pharmacodynamic studies using experimental DED in rabbits showed that TGNPs are effective in treating symptoms of DED. In conclusion, topical delivery of TGNPs could hold potential for efficient management of DED.


Assuntos
Síndromes do Olho Seco , Nanopartículas , Animais , Varredura Diferencial de Calorimetria , Nanopartículas/química , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Tacrolimo
15.
Indian J Crit Care Med ; 25(9): 1040-1041, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34963723

RESUMO

Endotracheal tube (ETT) cuff pressure monitoring during percutaneous dilatational tracheostomy (PDT) procedure is an easy-to-use innovative addition to the standard blind technique in a resource-limited setting. This technique can be carried out without disconnecting the breathing circuit, resulting in a lower risk of infectious aerosol generation. HOW TO CITE THIS ARTICLE: Mohammad H, Jain G, Agarwal A, Kausar S, Sama S. Application of Endotracheal Tube Cuff Pressure Monitoring during Percutaneous Dilatational Tracheostomy: A Novel Technique. Indian J Crit Care Med 2021;25(9):1040-1041.

17.
Indian J Crit Care Med ; 25(8): 866-871, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34733025

RESUMO

Background: The alveolar-arterial oxygen (A-a) gradient measures the difference between the oxygen concentration in alveoli and the arterial system, which has considerable clinical utility. Materials and methods: It was a retrospective, observational cohort study involving the analysis of patients diagnosed with acute COVID pneumonia and required noninvasive mechanical ventilation (NIV) over a period of 3 months. The primary objective was to investigate the utility of the A-a gradient (pre-NIV) as a predictor of 28-day mortality in COVID pneumonia. The secondary objective included the utility of other arterial blood gas (ABG) parameters (pre-NIV) as a predictor of 28-day mortality. The outcome was also compared between survivors and nonsurvivors. The outcome variables were analyzed by receiver-operating characteristic (ROC) curve, Youden index, and regression analysis. Results: The optimal criterion for A-a gradient to predict 28-day mortality was calculated as ≤430.43 at a Youden index of 0.5029, with the highest area under the curve (AUC) of 0.755 (p <0.0001). On regression analysis, the odds ratio for the A-a gradient was 0.99. A significant difference was observed in ABG predictors, including PaO2, PaCO2, A-a gradient, AO2, and arterial-alveolar (a-A) (%) among nonsurvivors vs survivors (p-value <0.001). The vasopressor requirement, need for renal replacement therapy, total parenteral requirement, and blood transfusion were higher among nonsurvivors; however, a significant difference was achieved with the vasopressor need (p <0.001). Conclusion: This study demonstrated that the A-a gradient is a significant predictor of mortality in patients initiated on NIV for worsening respiratory distress in COVID pneumonia. All other ABG parameters also showed a significant AUC for predicting 28-day mortality, although with variable sensitivity and specificity. Key messages: COVID-19 pneumonia shows an initial presentation with type 1 respiratory failure with increased A-a gradient, while a subsequent impending type 2 respiratory failure requires invasive ventilation. A significant difference was observed in ABG predictors, including PaO2, PaCO2, A-a gradient, AO2, and a-A (%) among nonsurvivors vs survivors. (p-value <0.001). The vasopressor requirement, need for renal replacement therapy, total parenteral requirement, and blood transfusion need were higher among nonsurvivors than survivors; however, a significant difference was achieved with the vasopressor need (p <0.001). How to cite this article: Gupta B, Jain G, Chandrakar S, Gupta N, Agarwal A. Arterial Blood Gas as a Predictor of Mortality in COVID Pneumonia Patients Initiated on Noninvasive Mechanical Ventilation: A Retrospective Analysis. Indian J Crit Care Med 2021;25(8):866-871.

18.
Int J Biol Macromol ; 191: 548-559, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536476

RESUMO

The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route. Both the nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR and XRD analysis. Quality by Design (QbD) approach was employed during the preparation of nanoparticles and the presence of chitosan coating was confirmed through thermogravimetric analysis and contact angle studies. Cationic polymer modification showed sustained in-vitro SIR release and enhanced ex-vivo scleral permeation and penetration. Further, SIR-CH-PLGA-NP revealed enhanced cellular uptake and thus, reduced lipopolysaccharide (LPS)-induced free-radicals generation by RAW 264.7 cells. The prepared nanoparticles were devoid of residual solvent and were found to be safe in HET-CAM analysis, RBCs damage analysis and histopathology studies. Moreover, high anti-angiogenic potential was observed in SIR-CH-PLGA-NP compared with SIR-PLGA-NP in chorioallantoic membrane (CAM) test. Overall, the current work opens up an avenue for further investigation of CH-PLGA-NP as SIR nanocarrier in the treatment of AMD.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Quitosana/análogos & derivados , Degeneração Macular/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sirolimo/administração & dosagem , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Degeneração Macular/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Wistar , Esclera/efeitos dos fármacos , Esclera/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico
20.
J Biomater Sci Polym Ed ; 32(17): 2306-2330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34387541

RESUMO

In modern world, Pharma sector observes steep increase in demand of personalized medicine. Various unique ideas and technology were proposed and implemented by different researchers to prepare personalized medicine and devices. 3-dimensional printing (3DP) is one of the revolutionary technologies which can be used to prepare tailored medicine via CAD (Computer Aided Design) software. 3DP allows researchers to manufacture customized dosage form with desired modifications in geometry which would in turn alter dosage behaviour of the product with reduced side effects. Current achievement of 3DP includes personalized and adjustable dosage form, multifunction drug delivery systems, medical devices, phantoms, and implants specific to patient anatomy. Additionally, 3DP is employed for preparing tailored regenerative medicines. This review focuses on 3DP use in pharmaceuticals including drug delivery systems and medical devices with their method of fabrication. Additionally, different clinical trials as well as different patents done till date are cited in the paper. Furthermore, regulatory issues and future perspective related to 3 D printing is also well discussed.


Assuntos
Preparações Farmacêuticas , Impressão Tridimensional , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA