Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2019): 20232258, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531402

RESUMO

Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.


Assuntos
Evolução Biológica , Fósseis , Animais , Peixes/anatomia & histologia , Vertebrados/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia
2.
Nature ; 623(7987): 550-554, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914937

RESUMO

The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Peixes , Fósseis , Vertebrados , Animais , Nadadeiras de Animais/anatomia & histologia , Peixes/anatomia & histologia , Paleontologia , Tomografia Computadorizada por Raios X , Vertebrados/anatomia & histologia , Sibéria
3.
Nature ; 621(7980): 782-787, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730987

RESUMO

The neurocranium is an integral part of the vertebrate head, itself a major evolutionary innovation1,2. However, its early history remains poorly understood, with great dissimilarity in form between the two living vertebrate groups: gnathostomes (jawed vertebrates) and cyclostomes (hagfishes and lampreys)2,3. The 100 Myr gap separating the Cambrian appearance of vertebrates4-6 from the earliest three-dimensionally preserved vertebrate neurocrania7 further obscures the origins of modern states. Here we use computed tomography to describe the cranial anatomy of an Ordovician stem-group gnathostome: Eriptychius americanus from the Harding Sandstone of Colorado, USA8. A fossilized head of Eriptychius preserves a symmetrical set of cartilages that we interpret as the preorbital neurocranium, enclosing the fronts of laterally placed orbits, terminally located mouth, olfactory bulbs and pineal organ. This suggests that, in the earliest gnathostomes, the neurocranium filled out the space between the dermal skeleton and brain, like in galeaspids, osteostracans and placoderms and unlike in cyclostomes2. However, these cartilages are not fused into a single neurocranial unit, suggesting that this is a derived gnathostome trait. Eriptychius fills a major temporal and phylogenetic gap in our understanding of the evolution of the gnathostome head, revealing a neurocranium with an anatomy unlike that of any previously described vertebrate.


Assuntos
Fósseis , Filogenia , Crânio , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Imageamento Tridimensional , Lampreias/anatomia & histologia , Boca , Bulbo Olfatório , Glândula Pineal , Crânio/anatomia & histologia , Tomógrafos Computadorizados , Vertebrados/anatomia & histologia , Vertebrados/classificação , Colorado , Cartilagem/anatomia & histologia
4.
Evolution ; 77(6): 1277-1288, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995728

RESUMO

Morphological evolution of the vertebrate skull has been explored across a wide range of tetrapod clades using geometric morphometrics, but the application of these methods to teleost fishes, accounting for roughly half of all vertebrate species, has been limited. Here we present the results of a study investigating 3D morphological evolution of the neurocranium across 114 species of Pelagiaria, a diverse clade of open-ocean teleost fishes that includes tuna and mackerel. Despite showing high shape disparity overall, taxa from all families fall into three distinct morphological clusters. Convergence in shape within clusters is high, and phylogenetic signal in shape data is significant but low. Neurocranium shape is significantly correlated with body elongation and significantly but weakly correlated with size. Diet and habitat depth are weakly correlated with shape, and nonsignificant after accounting for phylogeny. Evolutionary integration in the neurocranium is high, suggesting that convergence in skull shape and the evolution of extreme morphologies are associated with the correlated evolution of neurocranial elements. These results suggest that shape evolution in the pelagiarian neurocranium reflects the extremes in elongation found in body shape but is constrained along relatively few axes of variation, resulting in repeated evolution toward a restricted range of morphologies.


Assuntos
Crânio , Atum , Animais , Filogenia , Crânio/anatomia & histologia , Cabeça/anatomia & histologia , Peixes/anatomia & histologia , Evolução Biológica
5.
Evol Dev ; 25(1): 119-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308394

RESUMO

In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.


Assuntos
Evolução Biológica , Fósseis , Crânio , Animais , Fósseis/anatomia & histologia , Crista Neural/anatomia & histologia , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
6.
Front Cell Dev Biol ; 10: 932341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313571

RESUMO

Crushing and eating hard prey (durophagy) is mechanically demanding. The cartilage jaws of durophagous stingrays are known to be reinforced relative to non-durophagous relatives, with a thickened external cortex of mineralized blocks (tesserae), reinforcing struts inside the jaw (trabeculae), and pavement-like dentition. These strategies for skeletal strengthening against durophagy, however, are largely understood only from myliobatiform stingrays, although a hard prey diet has evolved multiple times in batoid fishes (rays, skates, guitarfishes). We perform a quantitative analysis of micro-CT data, describing jaw strengthening mechanisms in Rhina ancylostoma (Bowmouth Guitarfish) and Rhynchobatus australiae (White-spotted Wedgefish), durophagous members of the Rhinopristiformes, the sister taxon to Myliobatiformes. Both species possess trabeculae, more numerous and densely packed in Rhina, albeit simpler structurally than those in stingrays like Aetobatus and Rhinoptera. Rhina and Rhynchobatus exhibit impressively thickened jaw cortices, often involving >10 tesseral layers, most pronounced in regions where dentition is thickest, particularly in Rhynchobatus. Age series of both species illustrate that tesserae increase in size during growth, with enlarged and irregular tesserae associated with the jaws' oral surface in larger (older) individuals of both species, perhaps a feature of ageing. Unlike the flattened teeth of durophagous myliobatiform stingrays, both rhinopristiform species have oddly undulating dentitions, comprised of pebble-like teeth interlocked to form compound "meta-teeth" (large spheroidal structures involving multiple teeth). This is particularly striking in Rhina, where the upper/lower occlusal surfaces are mirrored undulations, fitting together like rounded woodworking finger-joints. Trabeculae were previously thought to have arisen twice independently in Batoidea; our results show they are more widespread among batoid groups than previously appreciated, albeit apparently absent in the phylogenetically basal Rajiformes. Comparisons with several other durophagous and non-durophagous species illustrate that batoid skeletal reinforcement architectures are modular: trabeculae can be variously oriented and are dominant in some species (e.g. Rhina, Aetobatus), whereas cortical thickening is more significant in others (e.g. Rhynchobatus), or both reinforcing features can be lacking (e.g. Raja, Urobatis). We discuss interactions and implications of character states, framing a classification scheme for exploring cartilage structure evolution in the cartilaginous fishes.

7.
J Anat ; 241(2): 393-406, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588137

RESUMO

Leedsichthys problematicus is a suspension-feeding member of the Mesozoic clade Pachycormiformes (stem-group Teleostei), and the largest known ray-finned fish (Actinopterygii). As in some larger fish, the skeleton is poorly ossified, but the caudal fin (tail) is well-preserved. Bony calluses have been found here, on the dermal fin rays, and when sectioned, show evidence of bone repair in response to damage. As part of this repair, distinctive tissue changes are observed, including the deposition of woven bone onto broken bone fragments and the surface of the lepidotrichium, after resorption of the edges of these fragments and the lepidotrichial surface itself. Within the woven bone are many clear elongate spaces, consistent with their interpretation as bundles of unmineralized collagen (Sharpey's fibres). These normally provide attachment within dermal bones, and here attach new bone to old, particularly to resorbed surfaces, identified by scalloped reversal lines. Haversian systems are retained in the old bone, from which vasculature initially invaded the callus, hence bringing stem cells committed to forming bone onto the surfaces of the damaged area. These observations provide strong evidence of a vital response through survival of a predatory attack by a large marine reptile, coeval with Leedsichthys in the Jurassic seas.


Assuntos
Osso e Ossos , Osteogênese , Animais , Colágeno , Peixes
8.
Nat Ecol Evol ; 5(12): 1576-1581, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34556830

RESUMO

Ankylosauria is a diverse clade of armoured dinosaurs whose members were important constituents of many Cretaceous faunas. Phylogenetic analyses imply that the clade diverged from its sister taxon, Stegosauria, during the late Early Jurassic, but the fossil records of both clades are sparse until the Late Jurassic (~150 million years ago). Moreover, Ankylosauria is almost entirely restricted to former Laurasian continents, with only a single valid Gondwanan taxon. Spicomellus afer gen. et sp. nov. appears to represent the earliest-known ankylosaur and the first to be named from Africa, from the Middle Jurassic (Bathonian-Callovian) of Morocco, filling an important gap in dinosaur evolution. The specimen consists of a rib with spiked dermal armour fused to its dorsal surface, an unprecedented morphology among extinct and extant vertebrates. The specimen reveals an unrealized morphological diversity of armoured dinosaurs during their early evolution, and implies the presence of an important but undiscovered Gondwanan fossil record.


Assuntos
Dinossauros , África , Animais , Dinossauros/anatomia & histologia , Fósseis , Filogenia
9.
Curr Biol ; 31(16): R1012-R1014, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428411

RESUMO

Fossil fish from the Silurian of China continue to surprise. These so-called 'maxillate placoderms', including the newly described Bianchengichthys micros, show a range of anatomical features that question our picture of vertebrate evolution and diversification.


Assuntos
Fósseis , Paleontologia , Animais , Evolução Biológica , Peixes , Vertebrados
10.
Nat Ecol Evol ; 5(6): 708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34089024

Assuntos
Âmbar , Fósseis , Mianmar
11.
Nat Ecol Evol ; 5(7): 919-926, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958756

RESUMO

Chondrichthyan dentitions are conventionally interpreted to reflect the ancestral gnathostome condition but interpretations of osteichthyan dental evolution in this light have proved unsuccessful, perhaps because chondrichthyan dentitions are equally specialized, or else evolved independently. Ischnacanthid acanthodians are stem-Chondrichthyes; as phylogenetic intermediates of osteichthyans and crown-chondrichthyans, the nature of their enigmatic dentition may inform homology and the ancestral gnathostome condition. Here we show that ischnacanthid marginal dentitions were statodont, composed of multicuspidate teeth added in distally diverging rows and through proximal superpositional replacement, while their symphyseal tooth whorls are comparable to chondrichthyan and osteichthyan counterparts. Ancestral state estimation indicates the presence of oral tubercles on the jaws of the gnathostome crown-ancestor; tooth whorls or tooth rows evolved independently in placoderms, osteichthyans, ischnacanthids, other acanthodians and crown-chondrichthyans. Crown-chondrichthyan dentitions are derived relative to the gnathostome crown-ancestor, which possessed a simple dentition and lacked a permanent dental lamina, which evolved independently in Chondrichthyes and Osteichthyes.


Assuntos
Dentição , Fósseis , Animais , Arcada Osseodentária/anatomia & histologia , Filogenia , Vertebrados
12.
J Anat ; 239(3): 704-719, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33895988

RESUMO

Among the cartilaginous fishes (Chondrichthyes), the Holocephali are unique in that teeth are absent both in ontogeny and adult regenerative growth. Instead, the holocephalan dentition of ever-growing nonshedding dental plates is composed of dentine, trabecular in arrangement, forming spaces into which a novel hypermineralized dentine (whitlockin) is deposited. These tissue features form a variety of specific morphologies as the defining characters of dental plates in the three families of extant holocephalans. We demonstrate how this morphology changes through ontogenetic development with continuity between morphologies, through successive growth stages of the dentition represented by the dental plate. For example, rod-shaped whitlockin appears early, later transformed into the tritoral pad, including a regular arrangement of vascular canals and whitlockin forming with increasing mineralization (95%-98%). While the tritoral pads develop lingually, stacks of individual ovoids of whitlockin replace the rods in the more labial parts of the plate, again shaped by the forming trabecular dentine. The ability to make dentine into new, distinctive patterns is retained in the evolution of the Holocephali, despite the lack of teeth forming in development of the dentition. We propose that developmentally, odontogenic stem cells, retained through evolution, control the trabecular dentine formation within the dental plate, and transition to form whitlockin, throughout lifetime growth. Our model of cellular activity proposes a tight membrane of odontoblasts, having transformed to whitloblasts, that can control active influx of minerals to the rapidly mineralizing dentine, forming whitlockin. After the reduced whitloblast cells transition back to odontoblasts, they continue to monitor the levels of minerals (calcium, phosphate and magnesium) and at a slower rate of growth in the peritubate 'softer' dentine. This model explains the unique features of transitions within the holocephalan dental plate morphology.


Assuntos
Dentina/anatomia & histologia , Peixes/anatomia & histologia , Dente/anatomia & histologia , Animais , Dentina/fisiologia , Dentição , Peixes/fisiologia , Odontogênese/fisiologia
13.
Front Genet ; 11: 571694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329708

RESUMO

Members of the Chondrichthyes (Elasmobranchii and Holocephali) are distinguished by their largely cartilaginous endoskeletons, which comprise an uncalcified core overlain by a mineralized layer; in the Elasmobranchii (sharks, skates, rays) most of this mineralization takes the form of calcified polygonal tiles known as tesserae. In recent years, these skeletal tissues have been described in ever increasing detail in sharks and rays, but those of Holocephali (chimaeroids) have been less well-studied, with conflicting accounts as to whether or not tesserae are present. During embryonic ontogeny in holocephalans, cervical vertebrae fuse to form a structure called the synarcual. The synarcual mineralizes early and progressively, anteroposteriorly and dorsoventrally, and therefore presents a good skeletal structure in which to observe mineralized tissues in this group. Here, we describe the development and mineralization of the synarcual in an adult and stage 36 elephant shark embryo (Callorhinchus milii). Small, discrete, but irregular blocks of cortical mineralization are present in stage 36, similar to what has been described recently in embryos of other chimaeroid taxa such as Hydrolagus, while in Callorhinchus adults, the blocks of mineralization are more irregular, but remain small. This differs from fossil members of the holocephalan crown group (Edaphodon), as well as from stem group holocephalans (e.g., Symmorida, Helodus, Iniopterygiformes), where tesserae are notably larger than in Callorhinchus and show similarities to elasmobranch tesserae, for example with respect to polygonal shape.

14.
Curr Biol ; 30(23): R1431-R1433, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33290712

RESUMO

New hydrodynamic analyses demonstrate that Palaeozoic jawless vertebrates, laden with heavy bony armour, were active, capable swimmers. This challenges previous hypotheses suggesting they were bottom feeders and impacts our understanding of the evolutionary transition from jawless to jawed vertebrates.


Assuntos
Hidrodinâmica , Vertebrados , Animais , Evolução Biológica , Cabeça , Arcada Osseodentária
16.
Integr Comp Biol ; 60(3): 630-643, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617556

RESUMO

The Holocephali is a major group of chondrichthyan fishes, the sister taxon to the sharks and rays (Elasmobranchii). However, the dentition of extant holocephalans is very different from that of the elasmobranchs, lacking individual tooth renewal, but comprising dental plates made entirely of self-renewing dentine. This renewal of all tissues occurs at the postero-lingual plate surface, as a function of their statodont condition. The fossil record of the holocephalans illuminates multiple different trends in the dentition, including shark-like teeth through to those with dentitions completely lacking individual teeth. Different taxa illustrate developmental retention of teeth but with fusion in their serial development. Dentine of different varieties comprises these teeth and composite dental plates, whose histology includes vascularized tubes within coronal dentine, merging with basal trabecular dentine. In this coronal vascularized dentine, extensive hypermineralization forms a wear resistant tissue transformed into a variety of morphologies. Through evolution, hypermineralized dentine becomes enclosed within the trabecular dentine, and specialized by reduction into specific zones within a composite dental plate, with these increasing in morphological disparity, all reflecting loss of defined teeth but retention of dentine production from the inherited developmental package.


Assuntos
Evolução Biológica , Calcificação Fisiológica , Dentição , Peixes/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Peixes/crescimento & desenvolvimento
17.
Science ; 369(6500): 211-216, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647004

RESUMO

The dentitions of extant fishes and land vertebrates vary in both pattern and type of tooth replacement. It has been argued that the common ancestral condition likely resembles the nonmarginal, radially arranged tooth files of arthrodires, an early group of armoured fishes. We used synchrotron microtomography to describe the fossil dentitions of so-called acanthothoracids, the most phylogenetically basal jawed vertebrates with teeth, belonging to the genera Radotina, Kosoraspis, and Tlamaspis (from the Early Devonian of the Czech Republic). Their dentitions differ fundamentally from those of arthrodires; they are marginal, carried by a cheekbone or a series of short dermal bones along the jaw edges, and teeth are added lingually as is the case in many chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). We propose these characteristics as ancestral for all jawed vertebrates.


Assuntos
Evolução Biológica , Dentição , Arcada Osseodentária/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais , República Tcheca , Tomografia com Microscopia Eletrônica , Fósseis , Filogenia , Síncrotrons , Dente/anatomia & histologia
18.
Sci Rep ; 10(1): 12582, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724124

RESUMO

Elasmobranchii (i.e., sharks, skates, and rays) forms one of the most diverse groups of marine predators. With a fossil record extending back into the Devonian, several modifications in their body plan illustrate their body shape diversity through time. The angel sharks, whose fossil record dates back to the Late Jurassic, some 160 Ma, have a dorsoventrally flattened body, similar to skates and rays. Fossil skeletons of this group show that the overall morphology was well established earlier in its history. By examining the skull shape of well-preserved fossil material compared to extant angel sharks using geometric morphometric methods, within a phylogenetic framework, we were able to determine the conservative skull shape among angel sharks with a high degree of integration. The morphospace occupation of extant angel sharks is rather restricted, with extensive overlap. Most of the differences in skull shape are related to their geographic distribution patterns. We found higher levels of disparity in extinct forms, but lower ones in extant species. Since angel sharks display a highly specialized prey capture behaviour, we suggest that the morphological integration and biogeographic processes are the main drivers of their diversity, which might limit their capacity to display higher disparities since their origin.


Assuntos
Evolução Biológica , Tubarões/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fósseis , Filogenia , Tubarões/genética
19.
Integr Comp Biol ; 60(3): 563-580, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533826

RESUMO

Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.


Assuntos
Evolução Biológica , Dente , Vertebrados , Animais , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Dente/fisiologia , Vertebrados/anatomia & histologia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento , Vertebrados/fisiologia
20.
J Fish Biol ; 97(1): 16-27, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32119120

RESUMO

All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.


Assuntos
Tubarões/anatomia & histologia , Tubarões/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Dentina , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA