Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Computation (Basel) ; 10(2): 19, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35910342


Employing first-principles calculations based on density functional theory (DFT), we designed a novel two-dimensional (2D) elemental monolayer allotrope of carbon called hexatetra-carbon. In the hexatetra-carbon structure, each carbon atom bonds with its four neighboring atoms in a 2D double layer crystal structure, which is formed by a network of carbon hexagonal prisms. Based on our calculations, it is found that hexatetra-carbon exhibits a good structural stability as confirmed by its rather high calculated cohesive energy -6.86 eV/atom, and the absence of imaginary phonon modes in its phonon dispersion spectra. Moreover, compared with its hexagonal counterpart, i.e., graphene, which is a gapless material, our designed hexatetra-carbon is a semiconductor with an indirect band gap of 2.20 eV. Furthermore, with a deeper look at the hexatetra-carbon, one finds that this novel monolayer may be obtained from bilayer graphene under external mechanical strain conditions. As a semiconductor with a moderate band gap in the visible light range, once synthesized, hexatetra-carbon would show promising applications in new opto-electronics technologies.

J Mol Graph Model ; 100: 107642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32688130


It is known that high spin-polarization and magnetism can be found even in materials with neither transition metals nor rare earths. In this paper, we report results of the structural design, electronic structure, magnetic and optical properties of new equiatomic quaternary Heusler (EQH) KCaBX (X = S and Se) compounds. Electron exchangecorrelation interactions are described by the Wu-Cohen (WC) functional and Tran-Blaha modified Becke-Johnson exchange (mBJ) potential. Ferromagnetic ordering is stable for the cubic structure of space group F43 m in which the K, Ca, B and X atoms are located at 4c, 4d, 4a and 4b Wyckoff positions, respectively. Quaternaries at hand exhibit a perfect spin-polarization around the Fermi level, which is a result of the half-metallicity with metallic spin-up channel and semiconductor spin-dn channel. The ferromagnetic half-metallic and spin-flip band gaps are 2.648(2.470) and 0.673(0.526), respectively, for KCaBS(KCaBSe). Both studied compounds have a total magnetic moment of 2.000 µB. Additionally, the strain effect on the electronic and magnetic properties is also examined. Finally, the optical properties of the KCaBX alloys are investigated for energies up to 25 eV. Optical spectra show the metallic behavior at extremely low energies and semiconductor nature at higher energies. Interestingly, KCaBS and KCaBSe exhibit prospective absorption properties with a quite large absorption coefficient in the ultraviolet regime.

Eletrônica , Elementos de Transição , Ligas , Magnetismo , Estudos Prospectivos
J Mol Graph Model ; 95: 107501, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31787502


Two dimensional monolayer semiconductors play an important role in designing opto-electronic devices for applications. In this paper, through the properties of the density functional theory, by running a series of first principles computations, the stability and the electronic properties of XI2 (X = Si, Ge, Sn, Pb) monolayer structures is investigated. Our calculations indicate that 2D SiI2, GeI2, SnI2, and PbI2 monolayer materials show good stabilities. Accessing on their electronic properties indicates that they have semiconducting nature with strain tunable indirect band gaps of 2.38, 2.80, 2.72, and 3.23 eV respectively which are obtained by functional (HSE06) level of theory. The obtained electronic properties can be effectively tuned by strain effects suggests the predicted 2D monolayer materials for application in new opto-electronic devices.

Chumbo , Semicondutores , Teoria da Densidade Funcional , Eletrônica
RSC Adv ; 10(43): 25609-25617, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35518578


In this work, a new equiatomic quaternary Heusler (EQH) compound, MnVZrP, is predicted using first principles calculations. Simulations show the good stability of the material, suggesting experimental realization. Results show that MnVZrP is a magnetic semiconductor material, exhibiting semiconductor characteristics in both spin channels, however, with strong spin-polarization. Electronic band gaps of 0.97 and 0.47 eV are obtained in the spin-up and spin-dn states, respectively. Mainly the d-d coupling regulates the electronic band structure around the Fermi level. Strain effects on the electronic properties of the proposed compound are also investigated. Simulations give the total magnetic moment of 3 µ B satisfying the Slate-Pauling rule. The main magnetic contributions are given by the Mn and V constituents. The results presented here suggest the promising applicability of EQH MnVZrP as a spin-filter. Additionally, the elastic property calculations indicate the mechanical stability and elastic anisotropy. The work may be useful in the magnetic Heusler alloys field, introducing a new member to the small group of magnetic semiconductor EQH compounds for spin-filter applications.

RSC Adv ; 10(66): 40411-40420, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520824


In this paper, we present a detailed investigation of the structural, electronic, and optical properties of pristine, nitrogenated, and fluorinated MgO monolayers using ab initio calculations. The two dimensional (2D) material stability is confirmed by the phonon dispersion curves and binding energies. Full functionalization causes notable changes in the monolayer structure and slightly reduces the chemical stability. The simulations predict that the MgO single layer is an indirect semiconductor with an energy gap of 3.481 (4.693) eV as determined by the GGA-PBE (HSE06) functional. The electronic structure of the MgO monolayer exhibits high sensitivity to chemical functionalization. Specifically, nitrogenation induces metallization of the MgO monolayer, while an indirect-direct band gap transition and band gap reduction of 81.34 (59.96)% are achieved by means of fluorination. Consequently, the functionalized single layers display strong optical absorption in the infrared and visible regimes. The results suggest that full nitrogenation and fluorination may be a quite effective approach to enhance the optoelectronic properties of the MgO monolayer for application in nano-devices.

J Mol Graph Model ; 92: 249-255, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422197


Theoretical calculations based on the density functional theory and the Boltzmann semi-classical transport theory have been carried out to examine the structural, elastic, electronic, optical and thermoelectric properties of Potassium- and Yttrium-based half-Heusler (HH) compounds KYX (X = Ge, Sn and Pb). Based on our calculations, KYGe, KYSn, and KYPb HH compounds are mechanically stable, and show semiconductor nature with direct band gaps of 0.852, 0.921, and 0.927 eV, respectively, which are obtained from mBJ level of theory. Moreover, the KYSn is brittle, while the KYGe and KYPb are dutile. The optical results show that these HH compounds have wide absorption band from high energy region of infrarred to ultraviolet region. At high photon energies (beyond of 13 eV), they shows very small reflectivity. Because of their favorable electronic structure, these materials have very good thermoelectric performance with high thermopower and figure of merit. The effect of temperature on thermoelectric properties also is discussed in details.

Complexos de Coordenação/química , Elasticidade , Condutividade Elétrica , Germânio/química , Chumbo/química , Condutividade Térmica , Algoritmos , Fenômenos Químicos , Modelos Teóricos