Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-35524853


Antibiotics in water system pose a human health risk due to the rise of antibacterial activity in the environmental web. Advanced oxidation processes are the potential to become an effective treatment technology for targeting antibiotics. This study demonstrates the visible light photocatalysis of lomefloxacin using magnesium titanate (MgTiO3). The nanomaterial was subjected to computational analysis to study morphology, functional, and optical characteristics through FESEM, XRD, FTIR, BET, UV-Vis, etc. Importantly, MgTiO3 had band gap energy of 3.09 eV. The photocatalytic studies were performed to observe different parameters affecting lomefloxacin degradation such as initial concentration, catalyst dosage, and pH. The nanomaterial exhibited the maximum lomefloxacin degradation. The study revealed that 30 mg/L of catalyst was optimum to degrade 10 mg/L of lomefloxacin with 30-W LED irradiation up to 150 min. Reactive species, namely, electron, hole, hydroxyl, and superoxide radicals, comprised the primary photocatalytic mechanism for lomefloxacin degradation. Ultimately, the summative result from this study highlights the suitability of the photocatalytic system to treat persistent antibiotics in aqueous environment.

Environ Sci Pollut Res Int ; 28(35): 48742-48753, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33914252


Photocatalysis is an effective way for treatment of wastewater and degradation of dyes. It is important to assess the reusability of photocatalyst and treated water after the treatment process. In this study, the photocatalytic activity of TiO2 (titanium dioxide) and TiO2-TMAOH (titanium dioxide-tetramethylammonium hydroxide) was analyzed for degradation of methylene blue dye. Enhanced degradation of methylene blue is observed while treated with TiO2-TMAOH with photodegradation efficiency (PDE) 80% within 20 min. A further study shows the reusability of TiO2 for degradation of dye for six cycles with a decrease in photodegradation efficiency from 90% (cycle-1) to 50% (cycle-2). Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) analysis were carried out to identify the functional groups in treated water, traces of titanium, and TMAOH, respectively. Seed germination of Vigna radiata using TiO2- and TiO2-TMAOH-treated water shows equivalent and consistent growth. Water quality analysis of treated water shows improved biochemical oxygen demand (BOD) level (1.5 mg L-1), which is suitable for reusability of water for many applications. The outcomes suggest treated water can be used for irrigation and plantation purposes.

Germinação , Água , Catálise , Sementes , Titânio
J Environ Health Sci Eng ; 17(1): 479-492, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297221


Background: Azo dyes represent the most commonly used group of dyes in the textile industry. These organic dyes are mainly resistant to biodegradation and may exhibit toxic and carcinogenic properties. The purpose of this study was to investigate the effects of doping zinc oxide (ZnO) nanoparticles (NPs) with transition metals (silver, manganese, and copper) on the photocatalytic efficiency of ZnO NPs in the removal of Direct Blue 15 dye from aqueous environments under ultraviolet (UV) radiation and visible light irradiation. Methods: One or two metals were used for doping the NPs. In total, seven types of undoped and transition metal-doped NPs were synthesized using the thermal solvent method with ZnO precursors and transition metal salts. The characteristics of the synthesized NPs were determined based on the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and zeta potential measurements. Results: The produced ZnO NPs did not exhibit any particular photocatalytic activities under UV radiation and visible light irradiation. The highest removal efficiency under UV radiation was about 74% in the presence of silver-doped ZnO NPs, while the maximum efficiency under visible light was 70% in the presence of copper-doped ZnO NPs. The lowest removal efficiency was related to pure ZnO, which was 18.4% and 14.6% under UV and visible light irradiation, respectively. Although the efficiency of dye removal under visible light was not high compared to UV radiation, this efficiency was noteworthy in terms of both practical and economic aspects since it was achieved without the presence of ultraviolet radiation. Conclusions: The synthesis of transition metal-doped ZnO nanophotocatalysts (with one or two metals) under UV radiation or visible light irradiation could be used as an efficient and promising technology for the photocatalytic removal of Direct Blue 15 dye from aqueous environments.