Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Braz. j. biol ; 83: e246389, 2023. graf
Artigo em Inglês | LILACS-Express | MEDLINE, LILACSEXPRESS | ID: biblio-1285638

RESUMO

Abstract Poultry industry is expanding rapidly and producing million tons of feather waste annually. Massive production of keratinaceous byproducts in the form of industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Keratinase released by a variety of microbes (bacteria and fungi) can be used for the effective treatment of keratin waste. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This study involves the isolation, characterization, and potential utility of fungal species for the degradation of chicken-feather waste through submerged and solid-state fermentation. The isolated fungus was identified and characterized as Aspergillus (A.) flavus. In a trial of 30 days, it was appeared that 74 and 8% feather weight was reduced through sub-merged and solid-state fermentation, respectively by A. flavus. The pH of the growth media in submerged fermentation was changed from 4.8 to 8.35. The exploited application of keratinolytic microbes is, therefore, recommended for the treatment of keratinaceous wastes to achieve dual benefits of remediation.


Resumo A indústria avícola está se expandindo rapidamente e produzindo milhões de toneladas de resíduos de penas anualmente. A produção massiva de subprodutos queratinosos na forma de resíduos agrícolas e industriais em todo o mundo exige sua utilização justificada. O tratamento químico de resíduos de queratina é proclamado como uma abordagem ecodestrutiva por vários pesquisadores, uma vez que gera poluentes secundários. A queratinase liberada por uma variedade de micróbios (bactérias e fungos) pode ser usada para o tratamento eficaz de resíduos de queratina. A degradação microbiana de resíduos de queratina é uma abordagem emergente e ecológica e oferece benefícios duplos, ou seja, tratamento de poluente recalcitrante (queratina) e obtenção de uma enzima comercialmente importante (queratinase). Este estudo envolve o isolamento, caracterização e utilidade potencial de espécies de fungos para a degradação de resíduos de penas de frango por meio da fermentação submersa e em estado sólido. O fungo isolado foi identificado e caracterizado como Aspergillus (A.) flavus. Em um ensaio de 30 dias, constatou-se que 74% e 8% do peso das penas foram reduzidos por A. flavus, respectivamente, por meio da fermentação submersa e em estado sólido. O pH do meio de crescimento em fermentação submersa foi alterado de 4,8 para 8,35. A aplicação explorada de micróbios queratinolíticos é, portanto, recomendada para o tratamento de resíduos ceratinosos para obter benefícios duplos de remediação.

2.
Materials (Basel) ; 14(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34206999

RESUMO

The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and easy to handle. Herein a simple, single-step biosynthesis of gold nanoparticles using aqueous extracts of Nigella sativa (NSE) and Zingiber officinale (GE) as a reducing and capping agent has been demonstrated. The formation of gold nanoparticles (Au NPs) was confirmed by X-ray diffraction, UV-Vis, and EDS spectroscopies. Spectroscopic and chromatographic analysis of GE and NSE revealed the presence of bioactive phytochemical constituents, such as gingerol, thymoquinone, etc., which successfully conjugated the surface of resulting Au NPs. TEM analysis indicated the formation of smaller-sized, less-aggregated, spherical-shaped Au NPs both in the case of GE (~9 nm) and NSE (~11 nm). To study the effect of the concentration of the extracts on the quality of resulting NPs and their anticancer properties, three different samples of Au NPs were prepared from each extract by varying the concentration of extracts while keeping the amount of precursor constant. In both cases, high-quality, spherical-shaped NPs were obtained, only at a high concentration of the extract, whereas at lower concentrations, larger-sized, irregular-shaped NPs were formed. Furthermore, the as-prepared Au NPs were evaluated for the anticancer properties against two different cell lines including MDA-MB-231 (breast cancer) and HCT 116 (colorectal cancer) cell lines. GE-conjugated Au NPs obtained by using a high concentration of the extract demonstrated superior anticancer properties when compared to NSE-conjugated counterparts.

3.
Braz J Biol ; 83: e246389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320050

RESUMO

Poultry industry is expanding rapidly and producing million tons of feather waste annually. Massive production of keratinaceous byproducts in the form of industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Keratinase released by a variety of microbes (bacteria and fungi) can be used for the effective treatment of keratin waste. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This study involves the isolation, characterization, and potential utility of fungal species for the degradation of chicken-feather waste through submerged and solid-state fermentation. The isolated fungus was identified and characterized as Aspergillus (A.) flavus. In a trial of 30 days, it was appeared that 74 and 8% feather weight was reduced through sub-merged and solid-state fermentation, respectively by A. flavus. The pH of the growth media in submerged fermentation was changed from 4.8 to 8.35. The exploited application of keratinolytic microbes is, therefore, recommended for the treatment of keratinaceous wastes to achieve dual benefits of remediation.


Assuntos
Galinhas , Plumas , Animais , Fermentação , Fungos , Resíduos Industriais , Queratinas/metabolismo
4.
ACS Omega ; 6(23): 15147-15155, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151094

RESUMO

Graphene nanocomposites have gained significant interest in a variety of biological applications due to their unique properties. Herein, we have studied the apoptosis-inducing ability and anticancer properties of functionalized highly reduced graphene oxide (HRG) and gold nanoparticles (Au NPs)-based nanocomposites (AP-HRG-Au). Samples were prepared under facile conditions via simple stirring and ultrasonication. All the samples were tested for their anticancer properties against different human cancer cell lines including lung (A549), liver (HepG2), and breast (MCF-7) cancer cells using doxorubicin as a positive control. In order to enhance the solubility and bioavailability of the sample, HRG was functionalized with 1-aminopyrene (1-AP) as a stabilizing ligand. The ligand also facilitated the homogeneous growth of Au NPs on the surface of HRG by offering chemically specific binding sites. The synthesis of nanocomposites and the surface functionalization of HRG were confirmed by UV-Vis, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The structure and morphology of the as-prepared nanocomposites were established by high-resolution transmission electron microscopy. Because of the functionalization, the AP-HRG-Au nanocomposite exhibited enhanced physical stability and high dispersibility. A comparative anticancer study of pristine HRG, nonfunctionalized HRG-Au, and 1-AP-functionalized AP-HRG-Au nanocomposites revealed the enhanced apoptosis ability of functionalized nanocomposites compared to the nonfunctionalized sample, whereas the pristine HRG did not show any anticancer ability against all tested cell lines. Both HRG-Au and AP-HRG-Au have induced a concentration-dependent reduction in cell viability in all tested cell lines after 48 h of exposure, with a significantly higher response in MCF-7 cells compared to the remaining cells. Therefore, MCF-7 cells were selected to perform detailed investigations using apoptosis assay, cell cycle analysis, and reactive oxygen species measurements. These results suggest that AP-HRG-Au induces enhanced apoptosis in human breast cancer cells.

5.
Saudi J Biol Sci ; 28(2): 1196-1202, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613047

RESUMO

Due to their inexpensive and eco-friendly nature, and existence of manganese in various oxidation states and their natural abundance have attained significant attention for the formation of Mn3O4 nanoparticles (Mn3O4 NPs). Herein, we report the preparation of Mn3O4 nanoparticles using manganese nitrate as a precursor material by utilization of a precipitation technique. The as-prepared Mn3O4 nanoparticles (Mn3O4 NPs) were characterized by using X-ray powder diffraction (XRD), UV-Visible spectroscopy (UV-Vis), High-Resolution Transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), Thermal gravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The antimicrobial properties of the as-synthesized Mn3O4 nanoparticles were investigated against numerous bacterial and fungal strains including S. aureus, E. coli, B. subtilis, P. aeruginosa, A. flavus and C. albicans. The Mn3O4 NPs inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 40 µg/ml and C. albicans with a MIC of 15 µg/ml. Furthermore, the Mn3O4 NPs anti-cancer activity was examined using MTT essay against A549 lung and MCF-7 breast cancer cell lines. The Mn3O4 NPs revealed significant activity against the examined cancer cell lines A549 and MCF-7. The IC50 values of Mn3O4 NPs with A549 cell line was found at concentration of 98 µg/mL and MCF-7 cell line was found at concentration of 25 µg/mL.

6.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138289

RESUMO

Catalysts of 10% Ni, supported on promoted alumina, were used to accomplish the partial oxidation of methane. The alumina support was doped with oxides of Mo, Mg, Ti and Y. An incipient wetness impregnation technique was used to synthesize the catalysts. The physicochemical properties of the catalysts were described by XRD, H2-TPR (temperature programmed reduction), BET, TGA, CO2-TPD (temperature-programmed desorption) and Raman. The characterization results denoted that Ni has a strong interaction with the support. The TGA investigation of spent catalysts displayed the anticoking enhancement of the promoters. The impact of the support promoters on the catalyst stability, methane conversion and H2 yield was inspected. Stability tests were done for 460 min. The H2 yields were 76 and 60% and the CH4 conversions were 67 and 92%, respectively, over Ni/Al2O3+Mg, when the reaction temperatures were 550 and 650 °C, respectively. The performance of the present work was compared to relevant findings in the literature.


Assuntos
Compostos de Alumínio/química , Manganês/química , Metano/química , Molibdênio/química , Níquel/química , Titânio/química , Ítrio/química , Catálise , Oxirredução
7.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962292

RESUMO

Plant extract of Pulicaria undulata (L.) was used as both reducing agent and stabilizing ligand for the rapid and green synthesis of gold (Au), silver (Ag), and gold-silver (Au-Ag) bimetallic (phase segregated/alloy) nanoparticles (NPs). These nanoparticles with different morphologies were prepared in two hours by stirring corresponding metal precursors in the aqueous solution of the plant extracts at ambient temperature. To infer the role of concentration of plant extract on the composition and morphology of NPs, we designed two different sets of experiments, namely (i) low concentration (LC) and (ii) high concentration (HC) of plant extract. In the case of using low concentration of the plant extract, irregular shaped Au, Ag, or phase segregated Au-Ag bimetallic NPs were obtained, whereas the use of higher concentrations of the plant extract resulted in the formation of spherical Au, Ag, and Au-Ag alloy NPs. The as-prepared Au, Ag, and Au-Ag bimetallic NPs showed morphology and composition dependent catalytic activity for the reduction of 4-nitrophenol (4-NPh) to 4-aminophenol (4-APh) in the presence of NaBH4. The bimetallic Au-Ag alloy NPs showed the highest catalytic activity compared to all other NPs.

8.
Sci Rep ; 10(1): 11728, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678111

RESUMO

A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd (HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal planes of HRG through π-π interactions, leaving amino groups outwards (similar like self-assembled monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and dispersibility. The surface functionalization was confirmed using, ultraviolet-visible (UV-Vis), Fourier transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG and crystallinity were confirmed using high-resolution transmission electron microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-Py-Pd nanocomposite was monitored using gas chromatography (GC).

9.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295143

RESUMO

A facile, one-pot, and proficient method was developed for the production of various 2-arylaminobenzimidazoles. This methodology is based for the first time on a copper catalyst promoted domino C-N cross-coupling reaction for the generation of 2-arylaminobenzimidazoles. Mechanistic investigations revealed that the synthetic pathway involves a copper-based desulphurization/nucleophilic substitution and a subsequent domino intra and intermolecular C-N cross-coupling reactions. Some of the issues typically encountered during the synthesis of 2-arylaminobezimidazoles, including the use of expensive catalytic systems and the low reactivity of bromo precursors, were addressed using this newly developed copper-catalyzed method. The reaction procedure is simple, generally with excellent substrate tolerance, and provides good to high yields of the desired products.


Assuntos
Benzimidazóis/síntese química , Técnicas de Química Sintética , Cobre/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Catálise , Estrutura Molecular
10.
ACS Omega ; 5(4): 1987-1996, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039336

RESUMO

The effective interactions of nanomaterials with biological constituents play a significant role in enhancing their biomedicinal properties. These interactions can be efficiently enhanced by altering the surface properties of nanomaterials. In this study, we demonstrate the method of altering the surface properties of ZrO2 nanoparticles (NPs) to enhance their antimicrobial properties. To do this, the surfaces of the ZrO2 NPs prepared using a solvothermal method is functionalized with glutamic acid, which is an α-amino acid containing both COO- and NH4 + ions. The binding of glutamic acid (GA) on the surface of ZrO2 was confirmed by UV-visible and Fourier transform infrared spectroscopies, whereas the phase and morphology of resulting GA-functionalized ZrO2 (GA-ZrO2) was identified by X-ray diffraction and transmission electron microscopy. GA stabilization has altered the surface charges of the ZrO2, which enhanced the dispersion qualities of NPs in aqueous media. The as-prepared GA-ZrO2 NPs were evaluated for their antibacterial properties toward four strains of oral bacteria, namely, Rothia mucilaginosa, Rothia dentocariosa, Streptococcus mitis, and Streptococcus mutans. GA-ZrO2 exhibited increased antimicrobial activities compared with pristine ZrO2. This improved activity can be attributed to the alteration of surface charges of ZrO2 with GA. Consequently, the dispersion properties of GA-ZrO2 in the aqueous solution have increased considerably, which may have enhanced the interactions between the nanomaterial and bacteria.

11.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861758

RESUMO

Herein, a systematic study of the enhanced physicochemical properties of lanthanide doped (La-doped) bismuth molybdate (Bi2MoO6) is performed. For this purpose, Bi2MoO6 and La-doped Bi2MoO6 were prepared by the sol-gel method. BiCl3, Na2MoO4·2H2O, and LaCl3·7H2O were taken as the main precursors while sodium dodecyl sulfate was used as a surfactant. Both Bi2MoO6 and La-doped Bi2MoO6 were calcined at 650 °C for 2 h. These prepared materials were characterized by spectroscopic techniques such as UV-VIS, FT-IR, XRD, photoluminescence, XPS, along with other techniques such as SEM, TEM, TGA, etc. The investigation of luminescence behavior revealed that the La-doped Bi2MoO6 nanocomposite exhibited much greater luminescence compared to the undoped Bi2MoO6. The photocatalytic behavior of the prepared materials was explored by studying the degradation of methylene blue (MB) at room temperature. The degradation of MB with Bi2MoO6 and La-doped bismuth molybdate were observed to be 68% and 75% @ 45 s, respectively, indicating an enhancement of catalytic performance due to the La doping.

12.
Materials (Basel) ; 12(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823461

RESUMO

A single-step solvothermal approach to prepare stabilized cubic zirconia (ZrO2) nanoparticles (NPs) and highly reduced graphene oxide (HRG) and ZrO2 nanocomposite (HRG@ZrO2) using benzyl alcohol as a solvent and stabilizing ligand is presented. The as-prepared ZrO2 NPs and the HRG@ZrO2 nanocomposite were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD), which confirmed the formation of ultra-small, cubic phase ZrO2 NPs with particle sizes of ~2 nm in both reactions. Slight variation of reaction conditions, including temperature and amount of benzyl alcohol, significantly affected the size of resulting NPs. The presence of benzyl alcohol as a stabilizing agent on the surface of ZrO2 NPs was confirmed using various techniques such as ultraviolet-visible (UV-vis), Fourier-transform infrared (FT-IR), Raman and XPS spectroscopies and thermogravimetric analysis (TGA). Furthermore, a comparative electrochemical study of both as-prepared ZrO2 NPs and the HRG@ZrO2 nanocomposites is reported. The HRG@ZrO2 nanocomposite confirms electronic interactions between ZrO2 and HRG when compared their electrochemical studies with pure ZrO2 and HRG using cyclic voltammetry (CV).

13.
Dalton Trans ; 47(35): 11988-12010, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29971317

RESUMO

The increasing use of silver (Ag) nanoparticles (NPs) in daily-life applications, electronics, or catalysis calls for green and cost-efficient synthetic methods. Ag NPs are used especially in biomedicine because of their antibacterial, antifungal, or anticancer properties. Chemical synthesis allows tuning the particle morphology, size, and crystallinity, but requires toxic and hazardous chemicals. Bioinspired synthetic protocols have shown promise to minimize environmental impact, but biological protocols for the synthesis of Ag NPs lack control on the morphology and crystallinity. This review briefly compiles the chemical synthesis of Ag NPs and contrasts it with "green" protocols based on lessons learnt from chemical synthesis. The synthesis of Ag NPs with different plant extracts and the associated phytomolecules, their chemical and biological effects, and their effect on particle synthesis are described and put into perspective to improve green protocols. The surface functionalization of Ag NPs by phytomolecules and the mechanisms of their biomedical applications are summarized.

14.
ChemistryOpen ; 6(1): 112-120, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28168156

RESUMO

We report on the synthesis of the zirconia-manganese carbonate ZrOx(x %)-MnCO3 catalyst (where x=1-7) that, upon calcination at 500 °C, is converted to zirconia-manganese oxide ZrOx(x %)-Mn2O3 . We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing agent. ZrOx(x %)-MnCO3 was prepared through co-precipitation by varying the amounts of Zr(NO3)4 (w/w %) in Mn(NO3)2. The morphology, composition, and crystallinity of the as-synthesized product and the catalysts prepared upon calcination were studied by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. The surface areas of the catalysts [133.58 m2 g-1 for ZrOx(1 %)-MnCO3 and 17.48 m2 g-1 for ZrOx(1 %)-Mn2O3 ] were determined by using the Brunauer-Emmett-Teller method, and the thermal stability was assessed by using thermal gravimetric analysis. The catalyst with composition ZrOx(1 %)-MnCO3 pre-calcined at 300 °C exhibited excellent specific activity (48.00 mmolg-1 h-1) with complete conversion within approximately 5 min and catalyst cyclability up to six times without any significant loss in activity. The specific activity, turnover number and turnover frequency achieved is the highest so far (to the best of our knowledge) compared to the previously reported catalysts used for the oxidation of benzyl alcohol. The catalyst showed selectivity for aromatic alcohols over aliphatic alcohols.

15.
Molecules ; 22(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106856

RESUMO

The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Origanum/química , Paládio/química , Extratos Vegetais/química , Álcoois/química , Catálise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução
16.
Molecules ; 21(11)2016 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-27827968

RESUMO

Microbicidal potential of silver nanoparticles (Ag-NPs) can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE) as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak) not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR) analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Substâncias Redutoras/farmacologia , Salvadoraceae/química , Prata/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde/métodos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Raízes de Plantas/química , Substâncias Redutoras/química , Prata/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Int J Nanomedicine ; 11: 873-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022256

RESUMO

Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Grafite/química , Neoplasias Pulmonares/patologia , Nanocompostos/química , Óxidos/química , Prata/química , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanocompostos/administração & dosagem , Pulicaria/química , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
18.
Molecules ; 21(3): 292, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938511

RESUMO

Polyacrylic acid (PAA) is an important industrial chemical, which has been extensively applied in various fields, including for several biomedical purposes. In this study, we report the synthesis and modification of this polymer with various phenol imides, such as succinimide, phthalimide and 1,8-naphthalimide. The as-synthesized derivatives were used to prepare polymer metal composites by the reaction with Zn(+2). These composites were characterized by using various techniques, including NMR, FT-IR, TGA, SEM and DSC. The as-prepared PAA-based composites were further evaluated for their anti-microbial properties against various pathogens, which include both Gram-positive and Gram-negative bacteria and different fungal strains. The synthesized composites have displayed considerable biocidal properties, ranging from mild to moderate activities against different strains tested.


Assuntos
Resinas Acrílicas/síntese química , Resinas Acrílicas/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Zinco/química , Resinas Acrílicas/química , Anti-Infecciosos/química , Resinas Compostas/síntese química , Resinas Compostas/química , Resinas Compostas/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imageamento por Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular
19.
Nanoscale Res Lett ; 10(1): 987, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26138452

RESUMO

Recently, green reduction of graphene oxide (GRO) using various natural materials, including plant extracts, has drawn significant attention among the scientific community. These methods are sustainable, low cost, and are more environmentally friendly than other standard methods of reduction. Herein, we report a facile and eco-friendly method for the bioreduction of GRO using Salvadora persica L. (S. persica L.) roots (miswak) extract as a bioreductant. The as-prepared highly reduced graphene oxide (SP-HRG) was characterized using powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron (XPS) spectroscopy, and transmission electron microscopy (TEM). Various results have confirmed that the biomolecules present in the root extract of miswak not only act as a bioreductant but also functionalize the surface of SP-HRG by acting as a capping ligand to stabilize it in water and other solvents. The dispersion quality of SP-HRG in deionized water was investigated in detail by preparing different samples of SP-HRG with increasing concentration of root extract. Furthermore, the dispersibility of SP-HRG was also compared with chemically reduced graphene oxide (CRG). The developed eco-friendly method for the reduction of GRO could provide a better substitute for a large-scale production of dispersant-free graphene and graphene-based materials for various applications in both technological and biological fields such as electronics, nanomedicine, and bionic materials.

20.
Dalton Trans ; 44(21): 9709-17, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25633046

RESUMO

The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.


Assuntos
Química Verde , Nanopartículas Metálicas/química , Ácido Ascórbico/química , Citratos/química , Metais Pesados/química , Extratos Vegetais/química , Citrato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA