Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(26): 14047-14060, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32582888

RESUMO

Nanorod (NR) arrays offer commendable visible-light-driven photocatalytic performances. Herein, we describe the construction of a ternary ZnO-ZnS-Gd2S3 nanostructural array in which a sulfidation process is used to decorate a Gd2S3 shell layer with a ZnS interface over vapor-phase-grown vertically-aligned ZnO. With control over the shell-wall thickness, the shell layer of ∼25 nm wall thickness on the ultra-long ZnO NR arrays exhibited a higher catalytic efficiency close to 3.3, 2.0, 1.2, and 1.8 times those of the bare ZnO, the ZnO-ZnS, the Gd2S3-decorated (∼10 nm) and Gd2S3 shell-layered (∼40 nm) ZnO-ZnS core-shell structures, respectively. The core-shell geometry and the shell-wall thickness with maximized contact interface afforded increased light absorption in the visible region and effectively retarded the recombination rate of the photoinduced charge carriers by confining electrons and holes separately, thus providing advantages in terms of the degradation of the pharmaceutical residue tetracycline and the industrial pollutant 4-nitrophenol in wastewater.


Assuntos
Nanotubos , Óxido de Zinco , Antibacterianos , Sulfetos , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA