Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 71(2): 59-65, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025851

RESUMO

The COVID-19 pandemic has disproportionately affected people with diabetes, who are at increased risk of severe COVID-19.* Increases in the number of type 1 diabetes diagnoses (1,2) and increased frequency and severity of diabetic ketoacidosis (DKA) at the time of diabetes diagnosis (3) have been reported in European pediatric populations during the COVID-19 pandemic. In adults, diabetes might be a long-term consequence of SARS-CoV-2 infection (4-7). To evaluate the risk for any new diabetes diagnosis (type 1, type 2, or other diabetes) >30 days† after acute infection with SARS-CoV-2 (the virus that causes COVID-19), CDC estimated diabetes incidence among patients aged <18 years (patients) with diagnosed COVID-19 from retrospective cohorts constructed using IQVIA health care claims data from March 1, 2020, through February 26, 2021, and compared it with incidence among patients matched by age and sex 1) who did not receive a COVID-19 diagnosis during the pandemic, or 2) who received a prepandemic non-COVID-19 acute respiratory infection (ARI) diagnosis. Analyses were replicated using a second data source (HealthVerity; March 1, 2020-June 28, 2021) that included patients who had any health care encounter possibly related to COVID-19. Among these patients, diabetes incidence was significantly higher among those with COVID-19 than among those 1) without COVID-19 in both databases (IQVIA: hazard ratio [HR] = 2.66, 95% CI = 1.98-3.56; HealthVerity: HR = 1.31, 95% CI = 1.20-1.44) and 2) with non-COVID-19 ARI in the prepandemic period (IQVIA, HR = 2.16, 95% CI = 1.64-2.86). The observed increased risk for diabetes among persons aged <18 years who had COVID-19 highlights the importance of COVID-19 prevention strategies, including vaccination, for all eligible persons in this age group,§ in addition to chronic disease prevention and management. The mechanism of how SARS-CoV-2 might lead to incident diabetes is likely complex and could differ by type 1 and type 2 diabetes. Monitoring for long-term consequences, including signs of new diabetes, following SARS-CoV-2 infection is important in this age group.

2.
MMWR Morb Mortal Wkly Rep ; 70(38): 1332-1336, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34555002

RESUMO

Foodborne illnesses are a substantial and largely preventable public health problem; before 2020 the incidence of most infections transmitted commonly through food had not declined for many years. To evaluate progress toward prevention of foodborne illnesses in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors the incidence of laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food reported by 10 U.S. sites.* FoodNet is a collaboration among CDC, 10 state health departments, the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), and the Food and Drug Administration. This report summarizes preliminary 2020 data and describes changes in incidence with those during 2017-2019. During 2020, observed incidences of infections caused by enteric pathogens decreased 26% compared with 2017-2019; infections associated with international travel decreased markedly. The extent to which these reductions reflect actual decreases in illness or decreases in case detection is unknown. On March 13, 2020, the United States declared a national emergency in response to the COVID-19 pandemic. After the declaration, state and local officials implemented stay-at-home orders, restaurant closures, school and child care center closures, and other public health interventions to slow the spread of SARS-CoV-2, the virus that causes COVID-19 (1). Federal travel restrictions were declared (1). These widespread interventions as well as other changes to daily life and hygiene behaviors, including increased handwashing, have likely changed exposures to foodborne pathogens. Other factors, such as changes in health care delivery, health care-seeking behaviors, and laboratory testing practices, might have decreased the detection of enteric infections. As the pandemic continues, surveillance of illness combined with data from other sources might help to elucidate the factors that led to the large changes in 2020; this understanding could lead to improved strategies to prevent illness. To reduce the incidence of these infections concerted efforts are needed, from farm to processing plant to restaurants and homes. Consumers can reduce their risk of foodborne illness by following safe food-handling and preparation recommendations.


Assuntos
COVID-19/epidemiologia , Microbiologia de Alimentos/estatística & dados numéricos , Parasitologia de Alimentos/estatística & dados numéricos , Doenças Transmitidas por Alimentos/epidemiologia , Pandemias , Conduta Expectante , Adolescente , Criança , Pré-Escolar , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Incidência , Lactente , Estados Unidos/epidemiologia
3.
Am J Epidemiol ; 190(10): 2188-2197, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878169

RESUMO

Hypothesis generation is a critical, but challenging, step in a foodborne outbreak investigation. The pathogens that contaminate food have many diverse reservoirs, resulting in seemingly limitless potential vehicles. Identifying a vehicle is particularly challenging for clusters detected through national pathogen-specific surveillance, because cases can be geographically dispersed and lack an obvious epidemiologic link. Moreover, state and local health departments could have limited resources to dedicate to cluster and outbreak investigations. These challenges underscore the importance of hypothesis generation during an outbreak investigation. In this review, we present a framework for hypothesis generation focusing on 3 primary sources of information, typically used in combination: 1) known sources of the pathogen causing illness; 2) person, place, and time characteristics of cases associated with the outbreak (descriptive data); and 3) case exposure assessment. Hypothesis generation can narrow the list of potential food vehicles and focus subsequent epidemiologic, laboratory, environmental, and traceback efforts, ensuring that time and resources are used more efficiently and increasing the likelihood of rapidly and conclusively implicating the contaminated food vehicle.


Assuntos
Surtos de Doenças , Reservatórios de Doenças , Monitoramento Epidemiológico , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância em Saúde Pública/métodos , Humanos
4.
Pathogens ; 10(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920028

RESUMO

Infectious disease is recognized as the greatest threat to the endangered chimpanzees made famous by the groundbreaking work of Dr. Jane Goodall at Gombe National Park (GNP), Tanzania. The permeable boundary of this small protected area allows for regular wildlife-human and wildlife-domestic animal overlap, which may facilitate cross-species transmission of pathogens and antimicrobial resistance. Few studies have examined the prevalence of antimicrobial resistance in wild ape populations. We used molecular techniques to investigate the presence of genes conferring resistance to sulfonamides (often used to treat diarrheal illness in human settings in this region) and tetracycline (used in the past-though much less so now) in fecal specimens from humans, domestic animals, chimpanzees, and baboons in and around GNP. We also tested stream water used by these groups. Sulfonamide resistance was common in humans (74%), non-human primates (43%), and domestic animals (17%). Tetracycline resistance was less common in all groups: humans (14%), non-human primates (3%), and domestic animals (6%). Sul resistance genes were detected from 4/22 (18%) of streams sampled. Differences in sul gene frequencies did not vary by location in humans nor in chimpanzees.

5.
MMWR Morb Mortal Wkly Rep ; 69(17): 509-514, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352955

RESUMO

To evaluate progress toward prevention of enteric illnesses, the Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors the incidence of laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food at 10 U.S. sites.* This report summarizes preliminary 2019 data and describes changes in incidence compared with that during 2016-2018. The incidence of enteric infections caused by these eight pathogens reported by FoodNet sites in 2019 continued to increase or remained unchanged, indicating progress in controlling major foodborne pathogens in the United States has stalled. Campylobacter and Salmonella caused the largest proportion of illnesses; trends in incidence varied by Salmonella serotype. Widespread adoption of whole genome sequencing (WGS) of bacteria has improved the ability to identify outbreaks, emerging strains, and sources of pathogens. To maximize the potential of WGS to link illnesses to particular sources, testing of isolates by clinical and public health laboratories is needed. Reductions in Salmonella serotype Typhimurium suggest that targeted interventions (e.g., vaccinating chickens and other food animals) might decrease human infections. Reducing contamination during food production, processing, and preparation will require more widespread implementation of known prevention measures and of new strategies that target particular pathogens and serotypes.


Assuntos
Doenças Transmitidas por Alimentos/epidemiologia , Vigilância da População , Microbiologia de Alimentos , Parasitologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Incidência , Estados Unidos/epidemiologia
6.
MMWR Morb Mortal Wkly Rep ; 68(16): 369-373, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31022166

RESUMO

Foodborne diseases represent a major health problem in the United States. The Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors cases of laboratory-diagnosed infection caused by eight pathogens transmitted commonly through food in 10 U.S. sites.* This report summarizes preliminary 2018 data and changes since 2015. During 2018, FoodNet identified 25,606 infections, 5,893 hospitalizations, and 120 deaths. The incidence of most infections is increasing, including those caused by Campylobacter and Salmonella, which might be partially attributable to the increased use of culture-independent diagnostic tests (CIDTs). The incidence of Cyclospora infections increased markedly compared with 2015-2017, in part related to large outbreaks associated with produce (1). More targeted prevention measures are needed on produce farms, food animal farms, and in meat and poultry processing establishments to make food safer and decrease human illness.


Assuntos
Surtos de Doenças , Microbiologia de Alimentos/estatística & dados numéricos , Parasitologia de Alimentos/estatística & dados numéricos , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância em Saúde Pública , Testes Diagnósticos de Rotina/estatística & dados numéricos , Humanos , Incidência , Estados Unidos/epidemiologia
7.
MMWR Morb Mortal Wkly Rep ; 67(11): 324-328, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29565841

RESUMO

Despite ongoing food safety measures in the United States, foodborne illness continues to be a substantial health burden. The 10 U.S. sites of the Foodborne Diseases Active Surveillance Network (FoodNet)* monitor cases of laboratory-diagnosed infections caused by nine pathogens transmitted commonly through food. This report summarizes preliminary 2017 data and describes changes in incidence since 2006. In 2017, FoodNet reported 24,484 infections, 5,677 hospitalizations, and 122 deaths. Compared with 2014-2016, the 2017 incidence of infections with Campylobacter, Listeria, non-O157 Shiga toxin-producing Escherichia coli (STEC), Yersinia, Vibrio, and Cyclospora increased. The increased incidences of pathogens for which testing was previously limited might have resulted from the increased use and sensitivity of culture-independent diagnostic tests (CIDTs), which can improve incidence estimates (1). Compared with 2006-2008, the 2017 incidence of infections with Salmonella serotypes Typhimurium and Heidelberg decreased, and the incidence of serotypes Javiana, Infantis, and Thompson increased. New regulatory requirements that include enhanced testing of poultry products for Salmonella† might have contributed to the decreases. The incidence of STEC O157 infections during 2017 also decreased compared with 2006-2008, which parallels reductions in isolations from ground beef.§ The declines in two Salmonella serotypes and STEC O157 infections provide supportive evidence that targeted control measures are effective. The marked increases in infections caused by some Salmonella serotypes provide an opportunity to investigate food and nonfood sources of infection and to design specific interventions.


Assuntos
Microbiologia de Alimentos , Parasitologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância da População , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Incidência , Estados Unidos/epidemiologia
8.
Emerg Infect Dis ; 23(13)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29154748

RESUMO

Response to sudden epidemic infectious disease emergencies can demand intensive and specialized training, as demonstrated in 2014 when Ebola virus disease (EVD) rapidly spread throughout West Africa. The medical community quickly became overwhelmed because of limited staff, supplies, and Ebola treatment units (ETUs). Because a mechanism to rapidly increase trained healthcare workers was needed, the US Centers for Disease Control and Prevention developed and implemented an introductory EVD safety training course to prepare US healthcare workers to work in West Africa ETUs. The goal was to teach principles and practices of safely providing patient care and was delivered through lectures, small-group breakout sessions, and practical exercises. During September 2014-March 2015, a total of 570 participants were trained during 16 course sessions. This course quickly increased the number of clinicians who could provide care in West Africa ETUs, showing the feasibility of rapidly developing and implementing training in response to a public health emergency.


Assuntos
Educação , Pessoal de Saúde , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Vigilância em Saúde Pública , Saúde Pública/educação , Alabama/epidemiologia , Humanos , Vigilância em Saúde Pública/métodos
9.
MMWR Morb Mortal Wkly Rep ; 66(15): 397-403, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28426643

RESUMO

Foodborne diseases represent a substantial public health concern in the United States. CDC's Foodborne Diseases Active Surveillance Network (FoodNet) monitors cases reported from 10 U.S. sites* of laboratory-diagnosed infections caused by nine enteric pathogens commonly transmitted through food. This report describes preliminary surveillance data for 2016 on the nine pathogens and changes in incidences compared with 2013-2015. In 2016, FoodNet identified 24,029 infections, 5,512 hospitalizations, and 98 deaths caused by these pathogens. The use of culture-independent diagnostic tests (CIDTs) by clinical laboratories to detect enteric pathogens has been steadily increasing since FoodNet began surveying clinical laboratories in 2010 (1). CIDTs complicate the interpretation of FoodNet surveillance data because pathogen detection could be affected by changes in health care provider behaviors or laboratory testing practices (2). Health care providers might be more likely to order CIDTs because these tests are quicker and easier to use than traditional culture methods, a circumstance that could increase pathogen detection (3). Similarly, pathogen detection could also be increasing as clinical laboratories adopt DNA-based syndromic panels, which include pathogens not often included in routine stool culture (4,5). In addition, CIDTs do not yield isolates, which public health officials rely on to distinguish pathogen subtypes, determine antimicrobial resistance, monitor trends, and detect outbreaks. To obtain isolates for infections identified by CIDTs, laboratories must perform reflex culture†; if clinical laboratories do not, the burden of culturing falls to state public health laboratories, which might not be able to absorb that burden as the adoption of these tests increases (2). Strategies are needed to preserve access to bacterial isolates for further characterization and to determine the effect of changing trends in testing practices on surveillance.


Assuntos
Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Microbiologia de Alimentos , Parasitologia de Alimentos , Doenças Transmitidas por Alimentos/diagnóstico , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância da População , Técnicas de Cultura/estatística & dados numéricos , Humanos , Incidência , Estados Unidos/epidemiologia
10.
Emerg Infect Dis ; 22(7): 1149-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27315584

RESUMO

During 2006-2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health.


Assuntos
Salmonelose Animal/microbiologia , Infecções por Salmonella/transmissão , Tartarugas/microbiologia , Animais , Criança , Surtos de Doenças , Humanos , Animais de Estimação , Saúde Pública , Salmonelose Animal/transmissão , Estados Unidos/epidemiologia , Zoonoses
11.
Am J Infect Control ; 43(8): 788-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26116335

RESUMO

In March 2014 the World Health Organization was notified of an outbreak of Ebola virus disease (EVD) in the forest region of Guinea. As of May 2015, the outbreak had become the most devastating EVD epidemic in history with more than 27,000 cases and more than 11,000 deaths. The introduction of EVD into noncontiguous countries, including the United States, from infected travelers highlights the importance of preparedness of all health care providers. Early identification and rapid isolation of patients suspected with EVD is critical to limiting the spread of Ebola virus. Additionally, enhanced understanding of EVD case definitions, clinical presentation, treatment procedures, and infection control strategies will improve the ability of health care workers to provide safe care for patients with EVD.


Assuntos
Terapia Biológica/métodos , Hidratação/métodos , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/terapia , Controle de Infecções/métodos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos
12.
MMWR Morb Mortal Wkly Rep ; 64(18): 495-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25974634

RESUMO

Foodborne illnesses represent a substantial, yet largely preventable, health burden in the United States. In 10 U.S. geographic areas, the Foodborne Diseases Active Surveillance Network (FoodNet) monitors the incidence of laboratory-confirmed infections caused by nine pathogens transmitted commonly through food. This report summarizes preliminary 2014 data and describes changes in incidence compared with 2006-2008 and 2011-2013. In 2014, FoodNet reported 19,542 infections, 4,445 hospitalizations, and 71 deaths. The incidence of Shiga toxin-producing Escherichia coli (STEC) O157 and Salmonella enterica serotype Typhimurium infections declined in 2014 compared with 2006-2008, and the incidence of infection with Campylobacter, Vibrio, and Salmonella serotypes Infantis and Javiana was higher. Compared with 2011-2013, the incidence of STEC O157 and Salmonella Typhimurium infections was lower, and the incidence of STEC non-O157 and Salmonella serotype Infantis infections was higher in 2014. Despite ongoing food safety efforts, the incidence of many infections remains high, indicating that further prevention measures are needed to make food safer and achieve national health objectives.


Assuntos
Microbiologia de Alimentos , Parasitologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância da População , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Incidência , Estados Unidos/epidemiologia
13.
Foodborne Pathog Dis ; 11(8): 635-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25076040

RESUMO

After a series of outbreaks associated with sprouts in the mid-1990s, the U.S. Food and Drug Administration (FDA) published guidelines in 1999 for sprouts producers to reduce the risk of contamination. The recommendations included treating seeds with an antimicrobial agent such as calcium hypochlorite solution and testing spent irrigation water for pathogens. From 1998 through 2010, 33 outbreaks from seed and bean sprouts were documented in the United States, affecting 1330 reported persons. Twenty-eight outbreaks were caused by Salmonella, four by Shiga toxin-producing Escherichia coli, and one by Listeria. In 15 of the 18 outbreaks with information available, growers had not followed key FDA guidelines. In three outbreaks, however, the implicated sprouts were produced by firms that appeared to have implemented key FDA guidelines. Although seed chlorination, if consistently applied, reduces pathogen burden on sprouts, it does not eliminate the risk of human infection. Further seed and sprouts disinfection technologies, some recently developed, will be needed to enhance sprouts safety and reduce human disease. Improved seed production practices could also decrease pathogen burden but, because seeds are a globally distributed commodity, will require international cooperation.


Assuntos
Surtos de Doenças , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Verduras/microbiologia , Desinfecção/métodos , Escherichia coli O157/isolamento & purificação , Fabaceae/microbiologia , Manipulação de Alimentos/normas , Microbiologia de Alimentos , Halogenação , Humanos , Listeria/isolamento & purificação , Medicago sativa/microbiologia , Salmonella/isolamento & purificação , Sementes/microbiologia , Estados Unidos/epidemiologia , United States Food and Drug Administration
14.
Int J Syst Evol Microbiol ; 64(Pt 9): 2944-2948, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899653

RESUMO

A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.


Assuntos
Campylobacter fetus/classificação , Filogenia , Répteis/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Técnicas de Tipagem Bacteriana , Campylobacter fetus/genética , Campylobacter fetus/isolamento & purificação , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Appl Environ Microbiol ; 80(15): 4540-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837383

RESUMO

From August to September 2008, the Centers for Disease Control and Prevention (CDC) assisted the Alaska Division of Public Health with an outbreak investigation of campylobacteriosis occurring among the residents of Southcentral Alaska. During the investigation, pulsed-field gel electrophoresis (PFGE) of Campylobacter jejuni isolates from human, raw pea, and wild bird fecal samples confirmed the epidemiologic link between illness and the consumption of raw peas contaminated by sandhill cranes for 15 of 43 epidemiologically linked human isolates. However, an association between the remaining epidemiologically linked human infections and the pea and wild bird isolates was not established. To better understand the molecular epidemiology of the outbreak, C. jejuni isolates (n=130; 59 from humans, 40 from peas, and 31 from wild birds) were further characterized by multilocus sequence typing (MLST). Here we present the molecular evidence to demonstrate the association of many more human C.jejuni infections associated with the outbreak with raw peas and wild bird feces. Among all sequence types (STs) identified, 26 of 39 (67%) were novel and exclusive to the outbreak. Five clusters of overlapping STs (n=32 isolates; 17 from humans, 2 from peas, and 13 from wild birds) were identified. In particular, cluster E (n=7 isolates; ST-5049) consisted of isolates from humans,peas, and wild birds. Novel STs clustered closely with isolates typically associated with wild birds and the environment but distinct from lineages commonly seen in human infections. Novel STs and alleles recovered from human outbreak isolates allowed additional infections caused by these rare genotypes to be attributed to the contaminated raw peas.


Assuntos
Animais Selvagens/microbiologia , Aves/microbiologia , Infecções por Campylobacter/microbiologia , Campylobacter/isolamento & purificação , Ervilhas/microbiologia , Alaska/epidemiologia , Animais , Campylobacter/classificação , Campylobacter/genética , Infecções por Campylobacter/epidemiologia , Surtos de Doenças , Fezes/microbiologia , Contaminação de Alimentos/análise , Genótipo , Humanos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia
16.
MMWR Morb Mortal Wkly Rep ; 63(15): 328-32, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24739341

RESUMO

Foodborne disease continues to be an important problem in the United States. Most illnesses are preventable. To evaluate progress toward prevention, the Foodborne Diseases Active Surveillance Network (FoodNet) monitors the incidence of laboratory-confirmed infections caused by nine pathogens transmitted commonly through food in 10 U.S. sites, covering approximately 15% of the U.S. population. This report summarizes preliminary 2013 data and describes trends since 2006. In 2013, a total of 19,056 infections, 4,200 hospitalizations, and 80 deaths were reported. For most infections, incidence was well above national Healthy People 2020 incidence targets and highest among children aged <5 years. Compared with 2010-2012, the estimated incidence of infection in 2013 was lower for Salmonella, higher for Vibrio, and unchanged overall.† Since 2006-2008, the overall incidence has not changed significantly. More needs to be done. Reducing these infections requires actions targeted to sources and pathogens, such as continued use of Salmonella poultry performance standards and actions mandated by the Food Safety Modernization Act (FSMA). FoodNet provides federal and state public health and regulatory agencies as well as the food industry with important information needed to determine if regulations, guidelines, and safety practices applied across the farm-to-table continuum are working.


Assuntos
Microbiologia de Alimentos/estatística & dados numéricos , Parasitologia de Alimentos/estatística & dados numéricos , Doenças Transmitidas por Alimentos/epidemiologia , Vigilância da População , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Doenças Transmitidas por Alimentos/prevenção & controle , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Estados Unidos/epidemiologia
17.
Clin Infect Dis ; 58(11): 1579-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24550377

RESUMO

Campylobacter fetus can cause intestinal illness and, occasionally, severe systemic infections. Infections mainly affect persons at higher risk, including elderly and immunocompromised individuals and those with occupational exposure to infected animals. Outbreaks are infrequent but have provided insight into sources. Source attribution of sporadic cases through case-control interviews has not been reported. The reservoirs for C. fetus are mainly cattle and sheep. Products from these animals are suspected as sources for human infections. Campylobacter fetus is rarely isolated from food, albeit selective isolation methods used in food microbiology are not suited for its detection. We hypothesize that the general population is regularly exposed to C. fetus through foods of animal origin, cross-contaminated foodstuffs, and perhaps other, as yet unidentified, routes. Campylobacter fetus infection should be suspected particularly in patients with nonspecific febrile illness who are immunocompromised or who may have been occupationally exposed to ruminants.


Assuntos
Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/patologia , Campylobacter fetus/isolamento & purificação , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/patologia , Animais , Infecções por Campylobacter/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Hospedeiro Imunocomprometido , Exposição Ocupacional , Ovinos , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/transmissão , Zoonoses/epidemiologia , Zoonoses/transmissão
19.
Phytopathology ; : PHYTO09120236IAtest, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27454682

RESUMO

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.

20.
Phytopathology ; : PHYTO09120236RVWtest, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27454683

RESUMO

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA