Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 29(6): 276-283, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37233718

RESUMO

Owing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (µCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies. However, the presence of metal artifacts dramatically hinders the accuracy of µCT analysis of new bone formation. To acquire reliable and accurate µCT results that reflect new bone formation in vivo, it is crucial to lessen the impact of metal artifacts. Herein, an optimized procedure for calibrating µCT parameters using histological data was developed. In this study, the porous titanium scaffolds were fabricated by powder bed fusion based on computer-aided design. These scaffolds were implanted in femur defects created in New Zealand rabbits. After 8 weeks, tissue samples were collected to assess new bone formation using µCT analysis. Resin-embedded tissue sections were then used for further histological analysis. A series of deartifact two-dimensional (2D) µCT images were obtained by setting the erosion radius and the dilation radius in the µCT analysis software (CTan) separately. To get the µCT results closer to the real value, the 2D µCT images and corresponding parameters were subsequently selected by matching the histological images in the particular region. After applying the optimized parameters, more accurate 3D images and more realistic statistical data were obtained. The results demonstrate that the newly established method of adjusting µCT parameters can effectively reduce the influence of metal artifacts on data analysis to some extent. For further validation, other metal materials should be analyzed using the process established in this study.


Assuntos
Osso e Ossos , Titânio , Animais , Coelhos , Microtomografia por Raio-X , Titânio/farmacologia , Próteses e Implantes , Fêmur , Alicerces Teciduais , Porosidade
2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430826

RESUMO

Many studies have been conducted to elucidate the role of Type VI collagen in muscle and tendon, however, its role in oral tissues remains unclear. In this study, an α2(VI) deficient mouse (Col6α2-KO) model was used to examine the role of Type VI collagen in oral tissues. Tissue volume and mineral density were measured in oral tissues by µCT. Proteome analysis was performed using protein extracted from alveolar bone. In addition, alveolar bone was evaluated with a periodontitis induced model. µCT analysis showed the Col6α2-KO mice had less volume of alveolar bone, dentin and dental pulp, while the width of periodontal ligament (PDL) was greater than WT. The mineral density in alveolar bone and dentin were elevated in Col6α2-KO mice compared with WT. Our proteome analysis showed significant changes in proteins related to ECM organization and elevation of proteins associated with biomineralization in the Col6α2-KO mice. In induced periodontitis, Col6α2-KO mice had greater alveolar bone loss compared with WT. In conclusion, Type VI collagen has a role in controlling biomineralization in alveolar bone and that changes in the ECM of alveolar bone could be associated with greater bone loss due to periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Colágeno Tipo VI/genética , Proteoma , Camundongos Knockout , Perda do Osso Alveolar/metabolismo
3.
Materials (Basel) ; 13(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549324

RESUMO

Investigations of the weldability of metals often deal with hot cracking, as one of the most dreaded imperfections during weld fabrication. The hot cracking investigations presented in this paper were carried out as part of a study on the development of low transformation temperature (LTT) weld filler materials. These alloys allow to mitigate tensile residual stresses that usually arise during welding using conventional weld filler materials. By this means, higher fatigue strength and higher lifetimes of the weld can be achieved. However, LTT weld filler materials are for example, high-alloyed Cr/Ni steels that are susceptible to the formation of hot cracks. To assess hot cracking, we applied the standardized modified varestraint transvarestraint hot cracking test (MVT), which is well appropriate to evaluate different base or filler materials with regard to their hot cracking susceptibility. In order to consider the complete material volume for the assessment of hot cracking, we additionally applied microfocus X-ray computer tomography (µCT). It is shown that by a suitable selection of welding and MVT parameter the analysis of the complete 3D hot crack network can provide additional information with regard to the hot cracking model following Prokhorov. It is now possible to determine easy accessible substitute values (e.g., maximum crack depth) for the extent of the Brittleness Temperature Range (BTR) and the minimum critical strain P m i n .

4.
Clin Biomech (Bristol, Avon) ; 73: 234-240, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32062473

RESUMO

BACKGROUND: The process of cavity preparation by broaching has an impact on the primary stability of uncemented hip stems and on the periprosthetic fracture risk. Osseodensifying broaches may increase primary stability, but have the potential to raise cortex strains and facilitate fracture. The aim of this study was to determine the influence of broach design on the forces acting during broaching, on the microstructure of the broached bone bed and the amount and depth of osseodensification. METHODS: Broach models representing compaction, blunt extraction and sharp extraction broaches, were used for quasi-static simulation of femoral cavity preparation on bovine trabecular bone cuboids. Broaching forces were measured and micro-computed tomography scans performed prior and after testing. Friction coefficients during broaching, bone densification parameters and size of the debris particles pushed into the bone were determined. FINDINGS: Friction coefficients during sharp extraction exceeded those during compaction and blunt extraction broaching (by 38% and 37%, P < .001). Total bone densification was enhanced for compaction and blunt extraction compared to sharp extraction broaching (increase of 121% and 117%, P = .005), resulting from higher densification depths for compaction (P = .001) and higher maximum densification for blunt extraction broaching (P = .008), with the latter producing fewer large particles than compaction broaching (P = .005). INTERPRETATION: Higher friction coefficients indicate a decreased periprosthetic fracture risk with sharp extraction broaches for equal implantation forces. The blunt extraction and compaction designs investigated densified the bone to a similar extent. Blunt extraction broaching may support better osseointegration due to smaller bone debris particles.


Assuntos
Artroplastia de Quadril , Fêmur/fisiologia , Fêmur/cirurgia , Fricção , Fenômenos Mecânicos , Desenho de Prótese , Idoso , Animais , Bovinos , Fêmur/diagnóstico por imagem , Prótese de Quadril , Humanos , Microtomografia por Raio-X
5.
Front Immunol ; 10: 1640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396210

RESUMO

Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.


Assuntos
Condrogênese , Células Endoteliais/fisiologia , Macrófagos/imunologia , Monócitos/imunologia , Músculo Esquelético/patologia , Ossificação Heterotópica/imunologia , Animais , Camundongos Transgênicos , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA