Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Biol Macromol ; : 134369, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098678

RESUMO

Hepatocellular carcinoma (HCC), ranking as the fourth most prevalent cancer globally, has garnered significant attention due to its high invasiveness and mortality rates. However, drug therapies face challenges of inadequate efficacy and unclear mechanisms. Here, we propose a novel biohybrid hydrogel that targets ß-Klotho (KLB) for HCC treatment. As a dual-network hydrogel, this gel combines gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA) to ensure biocompatibility while enhancing controlled drug release. Notably, it exhibits good storage stability, high drug load capacity, and efficient water absorption. By introducing the HDAC3 inhibitor RGFP966, we can selectively inhibit the activation of ß-Klotho. This deactivation effectively blocks the FGF21-KLB signaling pathway and inhibits the progression of HCC. Importantly, we have successfully validated this unique phenomenon both in vivo and in vitro, providing substantial evidence for the efficacy of this hydrogel-based anti-tumor drug delivery system as a promising strategy for HCC treatment. This innovative research outcome brings new hope to the field of tumor therapy, providing a reliable theoretical foundation for future clinical applications.

2.
J Infect Dev Ctries ; 18(4): 618-626, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728647

RESUMO

INTRODUCTION: Hepatitis B virus (HBV) infection is a global epidemic that can lead to several liver diseases, seriously affecting people's health. This study aimed to investigate the clinical potential of serum ß-klotho (KLB) as a promising biomarker in HBV-related liver diseases. METHODOLOGY: This study enrolled 30 patients with chronic hepatitis B (CHB), 35 with HBV-related cirrhosis, 66 with HBV-related hepatocellular carcinoma (HCC), and 48 healthy individuals. ELISA measured the levels of serum KLB in the four groups. We then compared the differences in serum KLB levels among the groups and analyzed the relationship between serum KLB and routine clinical parameters. RESULTS: The concentrations of serum KLB levels were increased sequentially among the healthy subjects, the HBV-related CHB group, the HBV-related cirrhosis group, and the HBV-related HCC group (p < 0.05). Expression of KLB was positively correlated with alpha-fetoprotein (AFP), total bilirubin, direct bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl-transferase, alkaline phosphatase, total bile acid, serum markers for liver fibrosis, ascites, cirrhosis, splenomegaly, and model for end-stage liver disease sodium, while negatively correlated with platelet count, albumin, and prothrombin activity (p < 0.05). In addition, serum KLB has better sensitivity in diagnosing HCC than AFP, and serum KLB combined with AFP has higher sensitivity and specificity than AFP alone in diagnosing HCC. CONCLUSIONS: Serum KLB level is associated with the severity of HBV-related liver diseases and has important diagnostic value for HCC. Therefore, it could be a predictive biomarker for monitoring disease progression.


Assuntos
Biomarcadores , Carcinoma Hepatocelular , Hepatite B Crônica , Proteínas Klotho , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Hepatite B Crônica/sangue , Hepatite B Crônica/complicações , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virologia , Glucuronidase/sangue , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virologia , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/virologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Idoso
3.
Pharmaceutics ; 16(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399319

RESUMO

Tissue engineering approaches aim to provide biocompatible scaffold supports that allow healing to progress often in healthy tissue. In diabetic foot ulcers (DFUs), hyperglycemia impedes ulcer regeneration, due to complications involving accumulations of cellular methylglyoxal (MG), a key component of oxidated stress and premature cellular aging which further limits repair. In this study, we aim to reduce MG using a collagen-chondroitin sulfate gene-activated scaffold (GAS) containing the glyoxalase-1 gene (GLO-1) to scavenge MG and anti-fibrotic ß-klotho to restore stem cell activity in diabetic adipose-derived stem cells (dADSCs). dADSCs were cultured on dual GAS constructs for 21 days in high-glucose media in vitro. Our results show that dADSCs cultured on dual GAS significantly reduced MG accumulation (-84%; p < 0.05) compared to the gene-free controls. Similar reductions in profibrotic proteins α-smooth muscle actin (-65%) and fibronectin (-76%; p < 0.05) were identified in dual GAS groups. Similar findings were observed in the expression of pro-scarring structural proteins collagen I (-62%), collagen IV (-70%) and collagen VII (-86%). A non-significant decrease in the expression of basement membrane protein E-cadherin (-59%) was noted; however, the dual GAS showed a significant increase in the expression of laminin (+300%). We conclude that dual GAS-containing Glo-1 and ß-klotho had a synergistic MG detoxification and anti-fibrotic role in dADSC's. This may be beneficial to provide better wound healing in DFUs by controlling the diabetic environment and rejuvenating the diabetic stem cells towards improved wound healing.

4.
Brain Res Bull ; 202: 110753, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660729

RESUMO

Spinal cord injury (SCI) is a kind of traumatic nervous system disease caused by neuronal death, causing symptoms like sensory, motor, and autonomic nerve dysfunction. The recovery of neurological function has always been a intractable problem that has greatly distressed individuals and society. Although the involvement of iron-dependent lipid peroxidation leading to nerve cell ferroptosis in SCI progression has been reported, the underlying mechanisms remain unaddressed. Thus, this study aimed to investigate the potential of recombinant human FGF21 (rhFGF21) in inhibiting ferroptosis of nerve cells and improving limb function after SCI, along with its underlying mechanisms. In vivo animal model showed that FGFR1, p-FGFR1, and ß-Klotho protein gradually increased over time after injury, reaching a peak on the third day. Moreover, rhFGF21 treatment significantly reduced ACSL4, increased GPX4 expression, reduced iron deposition, and inhibited ferroptosis. Meanwhile, rhFGF21 decreased cell apoptosis following acute spinal cord damage. In contrast, FGFR1 inhibitor PD173074 partially reversed the rhFGF21-induced therapeutic effects. Overall, this work revealed that rhFGF21 activates the FGFR1/ß-Klotho pathway to decrease ferroptosis of nerve cells, suggesting that FGF21 could be a new therapeutic target for SCI neurological rehabilitation.


Assuntos
Ferroptose , Traumatismos da Medula Espinal , Animais , Humanos , Ferro , Proteínas de Membrana , Neurônios , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Traumatismos da Medula Espinal/tratamento farmacológico
5.
Drug Alcohol Depend ; 245: 109809, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822122

RESUMO

Growing evidence indicates that the crosstalk between the central nervous system and the periphery plays an important role in the pathophysiology of neuropsychiatric conditions, including addictive disorders. Fibroblast growth factor 21 (FGF21) is part of the liver-brain axis and regulates energy homeostasis, metabolism, and macronutrient intake. In addition, FGF21 signaling modulates alcohol intake and preference, and changes in FGF21 levels are observed following alcohol consumption. To further elucidate the relationship between alcohol use and FGF21, we assessed serum FGF21 concentrations in 16 non-treatment seeking individuals with alcohol use disorder (AUD) in a naturalistic outpatient setting, as well as a controlled laboratory experiment that included alcohol cue-reactivity, alcohol priming, and alcohol self-administration in a bar-like setting. FGF21 levels were stable during the outpatient phase when participants received placebo and had no significant lifestyle changes. During the bar-like laboratory experiment, a robust increase in serum FGF21 concentrations was found after the 2-hr alcohol self-administration session (F3, 49 = 23.39, p < 0.001). Percent change in FGF21 levels positively correlated with the amount of alcohol self-administered but did not reach statistical significance. No significant changes in FGF21 levels were found after exposure to alcohol cues or consuming the priming drink. Given the bidirectional link between FGF21 and alcohol, targeting the FGF21 system may be further examined as a potential pharmacotherapy for AUD.


Assuntos
Alcoolismo , Humanos , Consumo de Bebidas Alcoólicas , Fatores de Crescimento de Fibroblastos/metabolismo , Etanol
6.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232594

RESUMO

Intrauterine adhesion (IUA) refers to injury to the basal layer of the endometrium, which can be caused by various factors. It is often accompanied by clinical symptoms such as abnormal menstruation, infertility, recurrent abortion, and periodic abdominal pain. In recent years, a number of studies have reported the effects of ß-Klotho (KLB) on the occurrence and development of human tumors and fibrotic diseases, but its relationship with endometrial fibroblasts and endometrial fibrosis has not been elucidated. In this study, we compared the expression of KLB in endometrial stromal cells (ESCs) from patients with IUA and normal controls. We constructed animal and cell models of IUA and conducted expression verification and functional experiments on KLB. We found that the expression of KLB was significantly increased in the ESCs of IUA patients and rat models compared with the controls. The overexpression of KLB could promote the proliferation and fibrosis of ESCs. In addition, the overexpression of KLB activated the PI3K/AKT signaling pathway in ESCs. Our study shows that KLB protein is highly expressed in the ESCs of patients with IUA and can enhance stromal cell proliferation and cell fibrosis by activating the PI3K/AKT pathway, thus promoting the development of IUA.


Assuntos
Fosfatidilinositol 3-Quinases , Doenças Uterinas , Animais , Endométrio/metabolismo , Feminino , Fibrose , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Aderências Teciduais/patologia , Doenças Uterinas/genética , Doenças Uterinas/patologia
7.
Front Nutr ; 9: 935805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034917

RESUMO

Objective: Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods: Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results: In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in ß-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion: In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.

8.
DNA Cell Biol ; 41(7): 691-698, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35793534

RESUMO

Metabolic alterations, resulting from factors such as obesity or infections (HIV), generate inflammation in the body, affecting the immune system and causing oxidative stress. Prolonged exposure to antiretroviral therapy (ART) conditions the appearance of alterations considered risk factors for metabolic syndrome (MetS), affecting the quality of life in people living with HIV/AIDS (PLWHA). ß-klotho is a protein that can counteract levels of oxidative stress. The aim was to determine the relation of ß-klotho and oxidative stress with metabolic alterations in PLWHA. We hypothesized that levels of ß-klotho and malondialdehyde (MDA) are related in PLWHA on ART with overweight/obesity. As a result of comparing cases versus controls, significant differences were obtained in levels of ß-klotho (p = 0.011), MDA (p < 0.0001), body mass index (p = 0.001), and weight (p < 0.0001). The presence of MetS in PLWHA was 21.2% and 10.6% according to the World Health Organization and ATP III (National Cholesterol Education Program Adult Treatment Panel III) criteria, respectively. The founded correlations were of ß-klotho (r = 0.019) and MDA (r = 0.0001), both with CD4+ cells in PLWHA. In controls, ß-klotho was correlated with very low-density lipoprotein (r = 0.035) and atherogenic index (AI; r = 0.037), MDA with AI (r = 0.039), cholesterol, and low-density lipoprotein (r = 0.002). The increase of inflammation in the organism, owing to HIV infection and/or the presence of obesity, conditions metabolic disruption or depletion of elements needed for homeostasis in the human body.


Assuntos
Infecções por HIV , Proteínas Klotho , Malondialdeído , Síndrome Metabólica , Adulto , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Inflamação/metabolismo , Proteínas Klotho/metabolismo , Lipoproteínas LDL/metabolismo , Malondialdeído/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Qualidade de Vida
9.
Metabolism ; 130: 155166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183545

RESUMO

Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.


Assuntos
Fígado Gorduroso , Obesidade , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Obesidade/metabolismo
10.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832950

RESUMO

Wound healing requires a tight orchestration of complex cellular events. Disruption in the cell-signaling events can severely impair healing. The application of biomaterial scaffolds has shown healing potential; however, the potential is insufficient for optimal wound maturation. This study explored the functional impact of a collagen-chondroitin sulfate scaffold functionalized with nanoparticles carrying an anti-aging gene ß-Klotho on human adipose-derived stem cells (ADSCs) for rejuvenative healing applications. We studied the response in the ADSCs in three phases: (1) transcriptional activities of pluripotency factors (Oct-4, Nanog and Sox-2), proliferation marker (Ki-67), wound healing regulators (TGF-ß3 and TGF-ß1); (2) paracrine bioactivity of the secretome generated by the ADSCs; and (3) regeneration of basement membrane (fibronectin, laminin, and collagen IV proteins) and expression of scar-associated proteins (α-SMA and elastin proteins) towards maturation. Overall, we found that the ß-Klotho gene-activated scaffold offers controlled activation of ADSCs' regenerative abilities. On day 3, the ADSCs on the gene-activated scaffold showed enhanced (2.5-fold) activation of transcription factor Oct-4 that was regulated transiently. This response was accompanied by a 3.6-fold increase in the expression of the anti-fibrotic gene TGF-ß3. Through paracrine signaling, the ADSCs-laden gene-activated scaffold also controlled human endothelial angiogenesis and pro-fibrotic response in dermal fibroblasts. Towards maturation, the ADSCs-laden gene-activated scaffold further showed an enhanced regeneration of the basement membrane through increases in laminin (2.1-fold) and collagen IV (8.8-fold) deposition. The ADSCs also expressed 2-fold lower amounts of the scar-associated α-SMA protein with improved qualitative elastin matrix deposition. Collectively, we determined that the ß-Klotho gene-activated scaffold possesses tremendous potential for wound healing and could advance stem cell-based therapy for rejuvenative healing applications.

11.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070219

RESUMO

Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and ß-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of ß-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts' development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/ß-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Bovinos/genética , Proteínas de Membrana/genética , Prenhez/genética , Telomerase/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Bovinos/fisiologia , Células Cultivadas , Fase de Clivagem do Zigoto/metabolismo , Implantação do Embrião/genética , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Expressão Gênica , Células da Granulosa/metabolismo , Proteínas de Membrana/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Gravidez , Prenhez/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
12.
J Thorac Dis ; 13(5): 3137-3150, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164204

RESUMO

BACKGROUND: We aimed to investigate the ß-klotho (KLB) expression in non-small cell lung cancer (NSCLC) and to determine its value as a novel molecular target for survival prognosis in patients with NSCLC. METHODS: The serum KLB concentrations in 50 patients with NSCLC and the 20 healthy persons were measured by enzyme-linked immunosorbent assay (ELISA) methods. The relationship between serum KLB level, including the level change after therapy, and the progression-free survival (PFS) and overall survival (OS) were analyzed. The KLB expression in A549 cells was measured by real-time polymerase chain reaction (RT-PCR) and western blotting. The function of cells was revealed by in vitro studies. RESULTS: The concentrations of serum KLB in patients with NSCLC were obviously lower than those in healthy subjects. KLB expression was significantly increased in patients after chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) targeted therapy. In addition, expression of KLB was positively related with PFS and OS. Compared with 16-human bronchial epithelial (HBE) cells, the expression level of KLB was significantly decreased in A549 cells. Overexpression of KLB suppressed the proliferation of A549 cells, along with G1-to-S phase arrest and apoptosis induction. CONCLUSIONS: KLB plays an anti-tumorigenic role in NSCLC. KLB may be a candidate target for the diagnosis and treatment of NSCLC and may serve a potentially significant role in future clinical applications.

13.
Endocrine ; 73(1): 160-165, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33770382

RESUMO

PURPOSES: Increasing evidence suggests that the FGF-Klotho endocrine system and the somatotropic system (pituitary and extra-pituitary GH) may have important metabolic and immune relationships, thus contributing to the pathophysiology of aging-related disorders, including diabetes, atherosclerosis, and cancer. The status of these interactions in isolated GH deficiency (IGHD) is unknown. The objective of this study was to assess the response of both FGF21 and ß-Klotho levels to a standard meal in a homogeneous group of adults with congenital untreated IGHD due to a homozygous mutation in the GHRH receptor gene. METHODS: In a cross-sectional study, we measured the levels of FGF21 and ß-Klotho, before and 30, 60, 120, and 180 min after a standardized test meal in 20 (11 males) IGHD and 20 (11 males) age-matched controls. Areas under the curves (AUC) of FGF21 and ß-Klotho were calculated. RESULTS: Baseline levels of FGF21 were similar, but baseline levels of ß-Klotho were lower in IGHD subjects. The IGHD individuals exhibited lower AUC for FGF21 and ß-Klotho levels than control subjects. There was a positive correlation between IGF1 and ß-Klotho levels in the pooled groups. No correlation was found between IGF1 and FGF21 levels. CONCLUSIONS: Subjects with lifetime, untreated IGHD exhibit reduced FGF21 and ß-Klotho levels response to a mixed meal. This difference may have consequences on metabolism and aging.


Assuntos
Nanismo Hipofisário , Adulto , Envelhecimento , Estudos Transversais , Fatores de Crescimento de Fibroblastos , Humanos , Masculino
14.
Life Sci ; 274: 119346, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713667

RESUMO

AIMS: Fibroblast growth factor 21 (FGF21) has been identified as the master hormonal regulator of energy balance, its elevation is observed in a series of metabolic and cardiovascular diseases. Studies have implicated the role of FGF21 signaling in the pathogenesis of abdominal aortic aneurysm (AAA). We will investigate the association of FGF21 and AAA development. MATERIALS AND METHODS: In this study, we assayed plasma levels of FGF21 in 82 patients with AAA and 44 control subjects, then analyzed their relationship with clinical, biochemical and histological phenotypes. The expression of ß-klotho, an essential co-receptor of FGF21, was assessed with IHC staining and RT-qPCR. Machine learning models incorporate a combination of FGF21 and clinical data were utilized in the prediction of AAA occurrence. KEY FINDINGS: FGF21 was statistically higher in patients with AAA (781 pg/ml [533, 1213]) than in control subjects (567 pg/ml [324, 939]). After adjustment for age and BMI, we found a positive association of FGF21 levels with AAA diameters, hypertension rate and hsCRP, and a negative correlation between FGF21 levels and HDL-c. Furthermore, the protein levels of ß-klotho in abdominal aorta of AAA were found significantly lower than in control group indicating the presence of FGF21 resistance. Combining FGF21 levels with four clinical characteristics significantly improved the stratification of AAA and control groups with an AUC of 0.778. SIGNIFICANCE: Combining detection of plasma FGF21 and clinical characteristics may be reliable for identifying the presence of AAA. The role of FGF21 as a therapeutic target of AAA warrants further investigation.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico , Biomarcadores/sangue , Fatores de Crescimento de Fibroblastos/sangue , Proteínas de Membrana/metabolismo , Idoso , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/patologia , Estudos de Casos e Controles , Feminino , Fatores de Crescimento de Fibroblastos/genética , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/genética , Prognóstico
15.
Am J Physiol Endocrinol Metab ; 320(4): E822-E834, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615874

RESUMO

Fibroblast growth factor-21 (FGF21) is a hormonal regulator of metabolism; it promotes glucose oxidation and the thermogenic capacity of adipose tissues. The levels of ß-klotho (KLB), the co-receptor required for FGF21 action, are decreased in brown (BAT) and white (WAT) adipose tissues during obesity, diabetes, and lipodystrophy. Reduced ß-klotho levels have been proposed to account for FGF21 resistance in these conditions. In this study, we explored whether downregulation of ß-klotho affects metabolic regulation and the thermogenic responsiveness of adipose tissues using mice with total (KLB-KO) or partial (KLB-heterozygotes) ablation of ß-klotho. We herein show that KLB gene dosage was inversely associated with adiposity in mice. Upon cold exposure, impaired browning of subcutaneous WAT and milder alterations in BAT were associated with reduced KLB gene dosage in mice. Cultured brown and beige adipocytes from mice with total or partial ablation of the KLB gene showed reduced thermogenic responsiveness to ß3-adrenergic activation by treatment with CL316,243, indicating that these effects were cell-autonomous. Deficiency in FGF21 mimicked the KLB-reduction-induced impairment of thermogenic responsiveness in brown and beige adipocytes. These results indicate that the levels of KLB in adipose tissues determine their thermogenic capacity to respond to cold and/or adrenergic stimuli. Moreover, an autocrine action of FGF21 in brown and beige adipocytes may account for the ability of the KLB level to influence thermogenic responsiveness.NEW & NOTEWORTHY Reduced levels of KLB (the obligatory FGF21 co-receptor), as occurring in obesity and type 2 diabetes, reduce the thermogenic responsiveness of adipose tissues in cold-exposed mice. Impaired response to ß3-adrenergic activation in brown and beige adipocytes with reduced KLB occurs in a cell-autonomous manner involving an autocrine action of FGF21.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas de Membrana/fisiologia , Termogênese/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Adiposidade/genética , Animais , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Células Cultivadas , Fatores de Crescimento de Fibroblastos/farmacologia , Dosagem de Genes/fisiologia , Proteínas Klotho , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/efeitos dos fármacos
16.
J Pers Med ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375065

RESUMO

Skin wounds can lead to serious morbidity complications in diabetic patients due to the reduced healing potential of autologous stem cells. One reason for the low functional potency of stem cells from diabetic patients (diabetic stem cells) is attributed to their senescent-like nature. Here, we investigated if an anti-ageing protein, ß-klotho, could be used to rejuvenate diabetic stem cells and to promote pro-angiogenic gene-activated scaffold (GAS)-induced functional response for wound healing applications. Human stem cells derived from the adipose tissue (adipose-derived stem cells (ADSCs)) of normal and diabetic (type 2) donors were used for the study. We report that the ß-klotho priming facilitated inflammatory signal pruning by reducing interleukin-8 release by more than half while concurrently doubling the release of monocyte chemoattractant protein-1. Additionally, ß-klotho priming enhanced the pro-angiogenic response of diabetic ADSCs on GAS by dampening the release of anti-angiogenic factors (i.e., pigment epithelium-derived factor, tissue inhibitor of metalloproteinase-1 and thrombospondin-1) while simultaneously supporting the expression of pro-angiogenic factors (i.e., Vascular Endothelial Growth Factor (VEGF), angiopoietin-2 and angiogenin). Finally, we show that ß-klotho pre-treatment expedites the cellular expression of matrix proteins such as collagen IV and collagen VI, which are implicated in tissue maturation. Taken together, our study provides evidence that the synergistic effect of the pro-angiogenic GAS and ß-klotho activation effectively accelerates the functional development of diabetic ADSCs for wound healing applications.

17.
Ann Transl Med ; 8(6): 310, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355754

RESUMO

BACKGROUND: Disruption of ß-cell insulin secretion and viability caused by excessive ethanol consumption increases type 2 diabetes mellitus (T2DM) pathogenesis risk. Fibroblast growth factor 21 (FGF21) plays a significant role in regulating lipid and glucose homeostasis. Recently, FGF21, best known for its role in lipid and glucose homeostasis regulation, and its obligate co-receptor ß-klotho have been shown to inhibit ethanol ingestion and metabolism. It remains unclear whether heavy ethanol intake modulates islet FGF21 expression and function. This study investigated the relationship between ethanol exposure, FGF21, and islet function in vivo/ex vivo islet and in vitro cell models. METHODS: Mice were gavaged with 3.5 g/kg ethanol or saline for 1-3 weeks (long-term exposure). Human MIN6 cells and isolated islets were cultured and treated with 80 mM ethanol for 24 h (short-term exposure) to mimic excessive ethanol consumption. We applied the oral glucose tolerance test (OGTT), blood glucometry, enzyme-linked immunosorbent assay (ELISAs) for insulin and FGF21, glucose stimulated insulin secretion (GSIS) testing, reverse-transcription (RT)-polymerase chain reaction (PCR), and western blot experiments. RESULTS: Long-term ethanol treatment induced FGF21 resistance in mouse pancreatic islets. Moreover, ethanol exposure damaged insulin secretory ability and glucose homeostasis. In vitro and ex vivo experiments showed that short-term ethanol treatment upregulated the expression of FGF21 signaling pathway-related genes and proteins, without affecting ß-cell survival or function. CONCLUSIONS: Long-term ethanol consumption induces FGF21 resistance-mediated pancreatic ß-cell dysfunction, and thus diabetes pathogenesis risk.

18.
Mol Metab ; 31: 45-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918921

RESUMO

OBJECTIVE: Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. METHODS: We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. RESULTS: Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. CONCLUSIONS: These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Tecido Adiposo/diagnóstico por imagem , Animais , Cricetinae , Masculino , Phodopus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
19.
J Hepatol ; 72(3): 411-419, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655133

RESUMO

BACKGROUND & AIM: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in adults and children. Along with obesity, diabetes and insulin resistance, genetic factors strongly impact on NAFLD development and progression. Dysregulated bile acid metabolism and the fibroblast growth factor 19 (FGF19) pathway play a pivotal role in NAFLD pathogenesis. However, the mechanism through which the FGF19 receptor system is associated with liver damage in NAFLD remains to be defined. METHODS: We evaluated the impact of the rs17618244 G>A ß-Klotho (KLB) variant on liver damage in 249 pediatric patients with biopsy-proven NAFLD and the association of this variant with the expression of hepatic and soluble KLB. In vitro models were established to investigate the role of the KLB mutant. RESULTS: The KLB rs17618244 variant was associated with an increased risk of ballooning and lobular inflammation. KLB plasma levels were lower in carriers of the rs17618244 minor A allele and were associated with lobular inflammation, ballooning and fibrosis. In HepG2 and Huh7 hepatoma cell lines, exposure to free fatty acids caused a severe reduction of intracellular and secreted KLB. Finally, KLB downregulation obtained by the expression of a KLB mutant in HepG2 and Huh7 cells induced intracellular lipid accumulation and upregulation of p62, ACOX1, ACSL1, IL-1ß and TNF-α gene expression. CONCLUSION: In conclusion, we showed an association between the rs17618244 KLB variant, which leads to reduced KLB expression, and the severity of NAFLD in pediatric patients. We can speculate that the KLB protein may exert a protective role against lipotoxicity and inflammation in hepatocytes. LAY SUMMARY: Genetic and environmental factors strongly impact on the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). The FGF19/FGFR4/KLB pathway plays a pivotal role in the pathogenesis of NAFLD. The aim of the study was to investigate the impact of a genetic variant in the KLB gene on the severity of liver disease. Our data suggest that the KLB protein plays a protective role against lipotoxicity and inflammation in hepatocytes.


Assuntos
Cirrose Hepática/sangue , Cirrose Hepática/genética , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Alelos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Criança , Regulação para Baixo/genética , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Células Hep G2 , Humanos , Inflamação/sangue , Inflamação/epidemiologia , Proteínas Klotho , Fígado/patologia , Cirrose Hepática/epidemiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Cidade de Roma/epidemiologia
20.
Front Psychiatry ; 11: 587492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584362

RESUMO

Background: The incidence of depressive symptoms (DS) in patients with stable coronary artery disease (SCAD) is significantly higher than those in healthy population, and that DS are independent risk factors for cardiovascular events. Previous studies have reported that fibroblast growth factor 21 (FGF21), ß-klotho, mature brain-derived neurotrophic factor (mBDNF), and BDNF precursor (proBDNF) play important roles in the pathogenesis and treatment of coronary heart disease and depression. With this in mind, the present study aimed to clarify the relationship between FGF21, ß-klotho, mBDNF, and proBDNF and SCAD with comorbid depression, in addition to also exploring the underlying mechanisms of these disease processes. Methods: A total of 116 patients with SCAD and 45 healthy controls were recruited. Patients with SCAD were further divided into two subgroups based on the Zung Self-Rating Depression Scale (SDS), which were characterized as those with no DS (NDS) and those with DS. Baseline data were collected, and serum levels of FGF21, ß-klotho, mBDNF, and proBDNF were determined. Results: In SCAD patients, Gensini scores-denoting the degree of coronary arteriostenosis-were significantly greater in the DS group than in the NDS group. There was also a positive correlation between the Gensini scores and the SDS scores. Patients in the SCAD group demonstrated a lower serum FGF21. Serum ß-klotho, mBDNF, and mBDNF/proBDNF were also significantly lower in the DS group than in the NDS group. Furthermore, ß-klotho and mBDNF were negatively correlated with the SDS scores. Additionally, SCAD patients were divided into lower- and higher-level groups using hierarchical cluster analysis, with the results highlighting that patients in the lower mBDNF group had a higher incidence of DS. Conclusions: The depression score was positively correlated with the severity of coronary artery stenosis, and serum FGF21, ß-klotho, mBDNF, and proBDNF were closely related to the development of DS in patients with SCAD. These observations suggest FGF21, ß-klotho, mBDNF, and proBDNF as potential diagnostic and/or therapeutic targets for SCAD with co-morbid depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA