Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.389
Filtrar
1.
Food Chem ; 455: 139911, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38823129

RESUMO

Ti-metal organic framework (Ti-MOF) doped with carbon dots (CDs) with enhanced antibacterial potential was synthesized using solvothermal-assisted mechanical stirring and used for the fabrication of CMC/Agar-based active packaging films. The incorporation of CD@Ti-MOF not only improved the tensile strength of the CMC/Agar film by 17.4% but also exhibited strong antioxidant activity with 100% of ABTS and 57.8% of DPPH radical scavenging using 0.64 cm2/mL of CMC/Agar/CD@Ti-MOF film. Furthermore, water vapor permeability, oxygen permeability, and ultraviolet light-blocking ability (95.7% of UV-B and 84.7% of UV-A) were improved significantly. The CMC/Agar/CD@Ti-MOF film showed strong antibacterial activity and could inhibit the progress of E. coli up to 8.2 Log CFU/mL and completely stopped the growth of L.monocytogenes after 12 h of incubation. Additionally, CMC/Agar/CD@Ti-MOF film extended the shelf life of cherry tomatoes preserved at 4 °C and delayed the quality degradation, maintaining the visual aspects of the packaging.

2.
mLife ; 3(1): 143-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827516

RESUMO

In the classical microbial isolation technique, the isolation process inevitably destroys all microbial interactions and thus makes it difficult to culture the many microorganisms that rely on these interactions for survival. In this study, we designed a simple coculture technique named the "sandwich agar plate method," which maintains microbial interactions throughout the isolation and pure culture processes. The total yield of uncultured species in sandwich agar plates based on eight helper strains was almost 10-fold that of the control group. Many uncultured species displayed commensal lifestyles. Further study found that heme was the growth-promoting factor of some marine commensal bacteria. Subsequent genomic analysis revealed that heme auxotrophies were common in various biotopes and prevalent in many uncultured microbial taxa. Moreover, our study supported that the survival strategies of heme auxotrophy in different habitats varied considerably. These findings highlight that cocultivation based on the "sandwich agar plate method" could be developed and used to isolate more uncultured bacteria.

3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731824

RESUMO

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Assuntos
Ágar , Rodófitas , Rodófitas/genética , Rodófitas/metabolismo , Rodófitas/crescimento & desenvolvimento , Salinidade , Regulação da Expressão Gênica de Plantas , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Temperatura , Nitrogênio/metabolismo
4.
Cureus ; 16(4): e58851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38784335

RESUMO

Strongyloidiasis is a parasitic infection caused by the nematode Strongyloides stercoralis that presents with a variety of nonspecific symptoms. Diagnosis is challenging unless physicians suspect this disease and perform sensitivity tests. We report a case of strongyloidiasis with protein-losing gastroenteropathy-like symptoms in a 92-year-old Japanese female with lower extremity edema and hypoalbuminemia. In this case, the patient refused invasive tests for a complete examination; however, an agar plate culture of a stool sample was used to diagnose strongyloidiasis. The patient was treated with ivermectin during the second visit. One month later, leg edema and hypoproteinemia improved. When the cause of the symptoms is unclear, physicians should be aware of the possibility of strongyloidiasis in a person residing in a tropical or subtropical environment, where human feces are used as fertilizer and individuals frequently go barefoot in agricultural settings.

5.
Cureus ; 16(4): e58301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38752083

RESUMO

Background The purpose of this in vitro investigation was to evaluate the impact of five distinct commercial mouthwashes on the development of Candida albicans that had been adhered to heat-cured acrylic resin sheets. Methods This in vitro investigation was carried out at the MES Medical College's Microbiology Department in Perinthalmanna, Kerala, India. A total of 72 heat-cured acrylic resin sheets, size 10 × 10 × 2 mm, were fabricated. After disinfection, all 72 acrylic sheets were placed in a flask containing a suspension of the standard strain of Candida species (American Type Culture Collection) and incubated at 37ºC for 24 hours. Then, the acrylic sheets were randomly divided into six groups, with each group containing 12 acrylic sheets. Group 1 was the control group to which no mouthwash was added. In group 2, Colgate Plax was added. In group 3, Hiora Himalaya was added. In group 4, Oral B was added. In group 5, Listerine was added. In group 6, Pepsodent was added. Colony-forming units (CFUs) were assessed using a colony counter every six, 24, 48, and 120 hours. After obtaining the pH and CFU of all 72 specimens, software known as the Statistical Package for Social Sciences (SPSS) (IBM Corp., Armonk, NY) was used to analyze the data. Results Candida albicans adhered to heat-cured denture base acrylic resin sheets differed significantly in response to commercially available mouthwashes (Oral B, Colgate Plax, and Pepsodent) and non-commercial mouthwashes (Hiora Himalaya and Listerine) that contained cetylpyridinium chloride. Conclusions Compared to other mouthwashes that do not contain cetylpyridinium chloride (Listerine and Hiora Himalaya), mouthwashes with cetylpyridinium chloride as the active ingredient (Oral B, Pepsodent, and Colgate Plax) have shown good antifungal properties against the adhering Candida albicans on denture base resin.

6.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
7.
Microb Ecol ; 87(1): 77, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806738

RESUMO

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.


Assuntos
Biodiversidade , Sedimentos Geológicos , Bactérias Gram-Positivas , RNA Ribossômico 16S , Sedimentos Geológicos/microbiologia , México , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/classificação , RNA Ribossômico 16S/genética , Bioprospecção , Filogenia , Antibacterianos/farmacologia , Água do Mar/microbiologia
8.
APMIS ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565324

RESUMO

Antibiotic susceptibility testing (AST) by agar diffusion has been repeatedly standardized and, in most cases, gives results which predict clinical success when antibiotic treatment is based on such results. The formation of the inhibition zone is due to a transition from planktonic to biofilm mode of growth. The kinetics of the interaction of antibiotics with bacteria is similar during AST by agar diffusion and during administration of antibiotics to the patients. However, the Mueller-Hinton agar (MHA) recommended for AST agar diffusion test is fundamentally different from the composition of the interstitial fluid in the human body where the infections take place and human cells do not thrive in MH media. Use of RPMI 1640 medium designed for growth of eucaryotic cells for AST of Pseudomonas aeruginosa against azithromycin results in lower minimal inhibitory concentration, compared to results obtained by MHA. The reason is that the RPMI 1640 medium increases uptake and reduces efflux of azithromycin compared to MHA. During treatment of cystic fibrosis patients with azithromycin, mutational resistance occur which is not detected by AST with MHA. Whether this is the case with other antibiotics and bacteria is not known but it is of clinical importance to be studied.

9.
Arkh Patol ; 86(2): 52-57, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591907

RESUMO

BACKGROUND: Among oral biopsies, small incisional tissues, have to be preserved all through the processing and embedding to ensure optimal visualization of all the mucosal layers without compromise. Optimal tissue orientation is the most critical step in tissue processing for demonstration of definitive morphology in the sections, which is often more challenging in cases of minute/small or thinner sections using routine paraffin techniques to evaluate accurate diagnosis. Some modification is needed to handle these samples to get a better result. Double embedding technique with some modification has been widely used for small/ thin/ multiple biopsies and gives excellent results in many other fields like general pathology and biotechnology. The double embedding technique though produced excellent and significant results in mucosal biopsies yet, it is of minimal interest among oral pathologists. To best of our knowledge, this is the first study to use double embedding technique for pulp tissues. OBJECTIVE: The present study was aimed to evaluate and compare the ease of embedding and sectioning sections using Agar-Paraffin double embedding technique for small oral mucosal biopsies and thin pulp tissues. MATERIAL AND METHODS: A total of 40 oral tissue samples categorized into two groups were taken for the present study. Group I included 20 small oral mucosal biopsy samples of size ranging from 0.2 to 0.5 cm and Group II included 20 pulp tissues obtained from freshly extracted non carious tooth. 10 blocks were prepared by routine paraffin method and 10 blocks were prepared by modified double embedding method for each group. Scores were given by comparing all the criteria with that of the routine paraffin technique. Chi-square test was used for statistical analysis. RESULTS: The average ease score for the Agar-Paraffin double embedded small/minute biopsies showed better scores than the pulp tissue with that of the routine technique. However, no statistically significant difference was seen among embedding and sectioning sections between the two groups. CONCLUSION: Modified double embedding method is simple and reliable alternative technique that helps in better orientation, processing and sectioning especially for oral small or thin biopsies and delicate pulp tissues.


Assuntos
Parafina , Humanos , Inclusão em Parafina , Ágar , Biópsia
10.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675704

RESUMO

Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such a reaction, N-aryl-4-aryldihydropyridines (DHPs), have significant anticancer activity. In this study, we successfully managed to synthesize a wide range of DHPs (18 examples, 8 of which were novel) using a metal-free, mild, inexpensive, recoverable, and biopolymer-based heterogeneous catalyst, known as piperazine, which was supported in agar-agar gel. In addition, 8 further examples (3 novel) of such dihydropyridines were synthesized using isatin instead of aldehyde as a reactant, producing spiro-linked structures. Lastly, this catalyst managed to afford an unprecedented product that was derived using an innovative technique-a combination of multicomponent reactions. Essentially, the product of our previously reported aza-Friedel-Crafts multicomponent reaction could itself be used as a reactant instead of aniline in the synthesis of more complex dihydropyridines.

11.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673918

RESUMO

Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.


Assuntos
Gelatina , Polissacarídeos , Gelatina/química , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Plásticos/química , Biopolímeros/química , Carragenina/química , Varredura Diferencial de Calorimetria , Sefarose/química , Plásticos Biodegradáveis/química
12.
J Med Ultrasound ; 32(1): 32-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665339

RESUMO

Background: Noninvasive neurosurgery has become possible through the use of transcranial focused ultrasound (FUS). This study assessed the heating ability of single element spherically focused transducers operating at 0.4 and 1.1 MHz through three-dimensional (3D) printed thermoplastic skull phantoms. Methods: Phantoms with precise skull bone geometry of a male patient were 3D printed using common thermoplastic materials following segmentation on a computed tomography head scan image. The brain tissue was mimicked by an agar-based gel phantom developed in-house. The selection of phantom materials was mainly based on transmission-through attenuation measurements. Phantom sonications were performed through water, and then, with the skull phantoms intervening the beam path. In each case, thermometry was performed at the focal spot using thermocouples. Results: The focal temperature change in the presence of the skull phantoms was reduced to less than 20 % of that recorded in free field when using the 0.4 MHz transducer, whereas the 1.1 MHz trans-skull sonication produced minimal or no change in focal temperature. The 0.4 MHz transducer showed better performance in trans-skull transmission but still not efficient. Conclusion: The inability of both tested single element transducers to steer the beam through the high attenuating skull phantoms and raise the temperature at the focus was confirmed, underlying the necessity to use a correction technique to compensate for energy losses, such those provided by phased arrays. The proposed phantom could be used as a cost-effective and ergonomic tool for trans-skull FUS preclinical studies.

13.
Enzyme Microb Technol ; 178: 110443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593516

RESUMO

A novel immobilized chitosanase was developed and utilized to produce chitosan oligosaccharides (COSs) via chitosan hydrolysis. Magnetite-agar gel particles (average particle diameter: 338 µm) were prepared by emulsifying an aqueous agar solution dispersing 200-nm magnetite particles with isooctane containing an emulsifier at 80 °C, followed by cooling the emulsified mixture. The chitosanase from Bacillus pumilus was immobilized on the magnetite-agar gel particles chemically activated by introducing glyoxyl groups with high immobilization yields (>80%), and the observed specific activity of the immobilized chitosanase was 16% of that of the free enzyme. This immobilized chitosanase could be rapidly recovered from aqueous solutions by applying magnetic force. The thermal stability of the immobilized chitosanase improved remarkably compared with that of free chitosanase: the deactivation rate constants at 35 °C of the free and immobilized enzymes were 8.1 × 10-5 and 3.9 × 10-8 s-1, respectively. This immobilized chitosanase could be reused for chitosan hydrolysis at 75 °C and pH 5.6, and 80% of its initial activity was maintained even after 10 cycles of use. COSs with a degree of polymerization (DP) of 2-7 were obtained using this immobilized chitosanase, and the product content of physiologically active COSs (DP ≥ 5) reached approximately 50%.


Assuntos
Ágar , Bacillus , Quitosana , Estabilidade Enzimática , Enzimas Imobilizadas , Glicosídeo Hidrolases , Oligossacarídeos , Quitosana/química , Quitosana/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/biossíntese , Hidrólise , Bacillus/enzimologia , Ágar/química , Géis/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Óxido Ferroso-Férrico/química , Biocatálise , Concentração de Íons de Hidrogênio , Cinética
14.
Int J Biol Macromol ; 268(Pt 2): 131760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663693

RESUMO

In the adsorption process for wastewater treatment, the adsorbent plays an important role. A composite adsorptive material composed of graphitic carbon nitride and agar-derived porous carbon (CNPC) was fabricated from simple precursors (melamine, thiourea, and agar) and through a facile procedure with different melamine and thiourea ratios. Characterization of CNPC proved a successful formation of a porous structure consisting of mesopores and macropores, wherein CNPC holds distinctive electrochemical (lowered resistance and higher specific capacity) and photochemical properties (lowered bandgap to 2.33 eV) thanks to the combination of graphitic carbon nitride (CN) and agar-derived porous carbon (PC). Inheriting the immanent nature, CNPC was subjected to the adsorption of methylene blue (MB) dye in an aqueous solution. The highest adsorption capacity was 133 mg/g for CNPC-4 which was prepared using a melamine to thiourea ratio of 4:4 - equivalent to the removal rate of 53.2 % and following the pseudo-I-order reaction rate. The effect of pH points out that pH 7 and 9 were susceptible to maximum removal and pretreatment is not required while the optimal ratio of 7.5 mg of MB and 30 mg of material was also determined to yield the highest performance. Furthermore, the reusability of the material for three consecutive cycles was evaluated based on two methods pyrolysis at 200 °C and photocatalytic degradation by irradiation under visible light. In general, the photocatalytic regeneration pathway is more ample and efficient than pyrolysis in terms of energy efficiency (saving energy over 10 times) and adsorption capacity stability. As a whole, the construction of accessible regenerative and stable adsorbent could be a venturing step into the sustainable development spearhead for industries.


Assuntos
Ágar , Grafite , Azul de Metileno , Poluentes Químicos da Água , Adsorção , Grafite/química , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Azul de Metileno/química , Ágar/química , Purificação da Água/métodos , Triazinas/química , Recuperação e Remediação Ambiental/métodos , Carbono/química , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Compostos de Nitrogênio/química , Cinética , Tioureia/química
15.
Environ Sci Pollut Res Int ; 31(22): 32371-32381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652189

RESUMO

Siderophores are molecules that exhibit a high specificity for iron (Fe), and their synthesis is induced by a deficiency of bioavailable Fe. Complexes of Fe-siderophore are formed extracellularly and diffuse through porins across membranes into bacterial cells. Siderophores can bind heavy metals facilitating their influx into cells via the same mechanism. The aim of the studies was to determine the ability of siderophore-producing bacteria isolated from soils in the north-west part of Wedel Jarlsberg Land (Spitsbergen) to chelate non-Fe metals (Al, Cd, Co, Cu, Hg, Mn, Sn, and Zn). Specially modified blue agar plates were used, where Fe was substituted by Al, Cd, Co, Cu, Hg, Mn, Sn, or Zn in metal-chrome azurol S (CAS) complex, which retained the blue color. It has been proven that 31 out of 33 strains were capable of producing siderophores that bind to Fe, as well as other metals. Siderophores from Pantoea sp. 24 bound only Fe and Zn, and O. anthropi 55 did not produce any siderophores in pure culture. The average efficiency of Cd, Co, Cu, Mn, Sn, and Zn chelation was either comparable or higher than that of Fe, while Al and Hg showed significantly lower efficiency. Siderophores produced by S. maltophilia 54, P. luteola 27, P. luteola 46, and P. putida 49 exhibited the highest non-Fe metal chelation activity. It can be concluded that the siderophores of these bacteria may constitute an integral part of the metal bioleaching preparation, and this fact will be the subject of further research.


Assuntos
Biodegradação Ambiental , Sideróforos , Microbiologia do Solo , Poluentes do Solo , Sideróforos/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Solo/química , Bactérias/metabolismo
16.
Chemosphere ; 358: 141959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608772

RESUMO

The sulfate-reduction process plays a crucial role in the biological valorization of SOx gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using H2S microsensors to monitor H2S production in real-time within a biofilm. To replace natural immobilization through extracellular polymeric substance production, sulfidogenic sludge was artificially immobilized using polymers. Physical and sulfate-reducing activity studies were performed to select a polymer-biomass matrix that maintained sulfate-reducing activity of biomass while providing strong microbial retention and mechanical strength. Several operational conditions of the sulfidogenic reactor allowed to obtain a H2S profiles under different inlet sulfate loads and, additionally, 3D mapping was assessed in order to perform a hydraulic characterization. Besides, the effects of artificial immobilization on biodiversity were investigated through the characterization of microbial communities. This study demonstrated the appropriateness of immobilized-biomass for characterization of sulfidogenic biomass in FCB using H2S electrochemical microsensors, and beneficial microbiological communities shifts as well as enrichment of sulfate-reducing bacteria have been confirmed.


Assuntos
Reatores Biológicos , Sulfeto de Hidrogênio , Esgotos , Sulfatos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Sulfeto de Hidrogênio/análise , Sulfatos/metabolismo , Sulfatos/análise , Biomassa , Biofilmes , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Bactérias/metabolismo , Oxirredução
17.
Int J Biol Macromol ; 268(Pt 1): 131451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614177

RESUMO

In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.


Assuntos
Ágar , Ácido Cítrico , Emulsões , Tamanho da Partícula , Emulsões/química , Ágar/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Géis/química , Reologia , Água/química , Colecalciferol/química
18.
Cureus ; 16(3): e56680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646316

RESUMO

Introduction Marine actinobacteria are promising sources of novel bioactive compounds due to their distinct ecological niches and diverse secondary metabolite production capabilities. Among these, Microbispora sp. T3S11 is notable for its unique spore chain structure, which allows for both morphological and genetic identification. Despite its potential, little is understood about the secondary metabolites produced by this strain. In this study, we hope to fill this gap by extracting and analyzing the antibacterial activities of secondary metabolites from Microbispora sp. T3S11, which will be the first time its bioactive compound profile is investigated. Aim To evaluate the antibacterial activity of secondary metabolites isolated from the marine actinobacterium Microbispora sp. T3S11. Materials and methods The antibacterial assays were carried out on agar plates containing the appropriate media for each pathogen. Sterile filter paper disks were impregnated with secondary metabolites extracted from Microbispora sp. T3S11 and placed on the surface of agar plates inoculated with the appropriate pathogens. Similarly, disks containing tetracycline were used as a positive control. The plates were then incubated at the appropriate temperature for each pathogen, and the zones of inhibition around the disks were measured to determine the extracted metabolites' antibacterial activity. Result Secondary metabolites had antimicrobial activity against Streptococcus mutans, Klebsiella pneumonia, and methicillin-resistant Staphylococcus aureus (MRSA). The inhibition of S. mutans was 7.5 mm and 8.5 mm at 75 µg/mL and 100 µg/mL, respectively. Klebsiella pneumonia zones measured 7 mm and 7.5 mm, while MRSA zones measured 7.6 mm and 8.5 mm at the same concentrations. Tetracycline, the standard antibiotic, had larger inhibition zones: 22 mm for S. mutans and Klebsiella pneumonia and 16 mm for MRSA, indicating variable susceptibility. Conclusion We conclude that the secondary metabolites extracted from Microbispora sp. T3S11 exhibits high antibacterial activity. This could be attributed to the presence of various active compounds.

19.
Gels ; 10(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534583

RESUMO

Agar, a naturally occurring polysaccharide, has been modified by grafting it with acrylic (AcA) and methacrylic (McA) acid monomers, resulting in acrylic or methacrylic acid grafted polymer (AA-g-AcA or AA-g-McA) with pH-sensitive swelling behavior. Different ratios between agar, monomers, and initiator were applied. The synthesized grades of both new polymer series were characterized using FTIR spectroscopy, NMR, TGA, DSC, and XRD to ascertain the intended grafting. The percentage of grafting (% G), grafting efficiency (% GE), and % conversion (% C) were calculated, and models with optimal characteristics were further characterized. The swelling behavior of the newly synthesized polymers was studied over time and in solutions with different pH. These polymers were subsequently crosslinked with varying amounts of glutaraldehyde to obtain 5-fluorouracil-loaded nanogels. The optimal ratios of polymer, drug, and crosslinker resulted in nearly 80% loading efficiency. The performed physicochemical characterization (TEM and DLS) showed spherical nanogels with nanometer sizes (105.7-250 nm), negative zeta potentials, and narrow size distributions. According to FTIR analysis, 5-fluorouracil was physically incorporated. The swelling and release behavior of the prepared nanogels was pH-sensitive, favoring the delivery of the chemotherapeutic to tumor cells. The biocompatibility of the proposed nanocarrier was proven using an in vitro hemolysis assay.

20.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542931

RESUMO

The gelation kinetics of agar aqueous solutions were studied by means of the viscosity flow curves using a coaxial Couette cylinder viscometer. The viscosity curves show an unusual sigmoidal trend or an exponential decay to a viscous steady state. An original theory of gelation kinetics was developed considering the coarsening of increasingly larger and more stable clusters due to Ostwald ripening and the breakup of clusters that were too large due to the instability of rotating large particles induced by the shear rate. The developed Bounded Ripening Growth model takes into account the trend of the viscosity curves by means of an autocatalytic process with negative feedback on aggregation according to the logistic kinetic equation, in which the constants k1(γ) and k-(ν) are governed by the surface tension and shear rate, respectively. A dimensionless equation based on the difference between the Weber number and the ratio of the inverse kinetic constant to forward constant, accounts for the behavior of the dispersed phase in equilibrium conditions or far from the hydrostatic equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA