Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
1.
Heliyon ; 10(17): e37129, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296161

RESUMO

Background: Delayed post-hypoxic leukoencephalopathy (DPHL) is characterized by a biphasic clinical course, with complete recovery from coma to a fully conscious state lasting one to four weeks (lucid interval), followed by abrupt neurological deterioration as an indirect consequence of hypoxic events like carbon monoxide poisoning and narcotic drug overdose. To our best knowledge, there are no documented cases in literature of choreoathetosis and dementia following poppy-induced DPHL with 14-3-3 protein in cerebrospinal fluid (CSF). Case presentation: We report the case of a 70-year-old female who underwent cardiopulmonary resuscitation (CPR) due to overdose of homemade refined opium poppy paste two weeks prior to presentation. She presented a progressive cognitive decline, along with the development of apraxia and choreic movement affecting her tongue and bilateral upper and lower extremities. During the symptomatic phase, brain magnetic resonance imaging (MRI) showed bilateral symmetrical hyperintense signals mostly in central frontal, temporal, and parieto-occipital lobes in the diffusion weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences which are the characteristic findings of DPHL. CSF routine analysis, as well as toxicology screening, autoimmune and paraneoplastic encephalitis panels were negative, but the presence of 14-3-3 protein in the CSF was detected. With steroid therapy, hyperbaric oxygen therapy and symptomatic treatment, she experienced gradual improvement in cognition, motivation, and psychomotor function. Conclusion: DPHL represents a distinct form of encephalopathy characterized by unique clinical course and imaging features. It is the first report of DPHL with positive 14-3-3 protein in CSF. The potential of 14-3-3 protein as a biomarker for diagnosing DPHL and its ability to predict disease severity and prognosis warrants further research.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39225225

RESUMO

Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.

3.
Aging Biol ; 22024.
Artigo em Inglês | MEDLINE | ID: mdl-39263528

RESUMO

Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.

4.
Asian J Surg ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39232956

RESUMO

INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer after hepatocellular carcinoma. Through data mining of publicly available iCCA transcriptomic datasets from the Gene Expression Omnibus, we identified SFN as the most significantly up-regulated gene in iCCA compared to normal tissue, focusing on the Gene Ontology term "cell proliferation" (GO:0008283). SFN encodes the 14-3-3σ protein, also known as stratifin, which plays crucial roles in various cellular processes. MATERIALS AND METHODS: Immunohistochemistry was used to assess stratifin expression in 182 patients with localized iCCAs undergoing surgical resection. Patients were divided into low and high expression groups, and the association between stratifin expression and clinicopathological features was analyzed. Univariate and multivariate survival analyses were performed to assess overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS). RESULTS: Elevated stratifin expression in iCCAs was significantly associated with the absence of hepatitis, positive surgical margins, advanced primary tumor stages, and higher histological grades (all p ≤ 0.011). Survival analyses demonstrated a significant negative association between stratifin expression and all prognostic indicators, including OS, DSS, LRFS, and MeFS (all p ≤ 0.0004). Multivariate analysis revealed that stratifin overexpression was significantly correlated with poorer outcomes in terms of DSS, LRFS, and MeFS (all p < 0.001). CONCLUSIONS: These findings suggest that stratifin may play a crucial role in iCCA oncogenesis and tumor progression, serving as a potential novel prognostic biomarker.

5.
Antioxidants (Basel) ; 13(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39334733

RESUMO

Neuroinflammation is a critical aspect of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This study investigates the anti-neuroinflammatory properties of oleocanthal and its oxidation product, oleocanthalic acid, using the BV-2 cell line activated with lipopolysaccharide. Our findings revealed that oleocanthal significantly inhibited the production of pro-inflammatory cytokines and reduced the expression of inflammatory genes, counteracted oxidative stress induced by lipopolysaccharide, and increased cell phagocytic activity. Conversely, oleocanthalic acid was not able to counteract lipopolysaccharide-induced activation. The docking analysis revealed a plausible interaction of oleocanthal, with both CD14 and MD-2 leading to a potential interference with TLR4 signaling. Since our data show that oleocanthal only partially reduces the lipopolysaccharide-induced activation of NF-kB, its action as a TLR4 antagonist alone cannot explain its remarkable effect against neuroinflammation. Proteomic analysis revealed that oleocanthal counteracts the LPS modulation of 31 proteins, including significant targets such as gelsolin, clathrin, ACOD1, and four different isoforms of 14-3-3 protein, indicating new potential molecular targets of the compound. In conclusion, oleocanthal, but not oleocanthalic acid, mitigates neuroinflammation through multiple mechanisms, highlighting a pleiotropic action that is particularly important in the context of neurodegeneration.

6.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345434

RESUMO

Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding. We substituted the pThr residue of pT(502-510) peptide by residues with varying number of negative charges, and investigated binding of the peptides to 14-3-3ε using MD simulations and biophysical methods. We demonstrated that at least one negative charge is required for the peptides to bind 14-3-3ε while phosphorylation is not necessary, and that two negative charges are preferable for high affinity binding.

7.
J Biol Chem ; 300(10): 107774, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276932

RESUMO

The relationship between O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and mitosis is intertwined. Besides the numerous mitotic OGT substrates that have been identified, OGT itself is also a target of the mitotic machinery. Previously, our investigations have shown that Checkpoint kinase 1 (Chk1) phosphorylates OGT at Ser-20 to increase OGT levels during cytokinesis, suggesting that OGT levels oscillate as mitosis progresses. Herein we studied its underlying mechanism. We set out from an R17C mutation of OGT, which is a uterine carcinoma mutation in The Cancer Genome Atlas. We found that R17C abolishes the S20 phosphorylation of OGT, as it lies in the Chk1 phosphorylating consensus motif. Consistent with our previous report that pSer-20 is essential for OGT level increases during cytokinesis, we further demonstrate that the R17C mutation renders OGT less stable, decreases vimentin phosphorylation levels and results in cytokinesis defects. Based on bioinformatic predictions, pSer-20 renders OGT more likely to interact with 14-3-3 proteins, the phospho-binding signal adaptor/scaffold protein family. By screening the seven isoforms of 14-3-3 family, we show that 14-3-3ε specifically associates with Ser-20-phosphorylated OGT. Moreover, we studied the R17C and S20A mutations in xenograft models and demonstrated that they both inhibit uterine carcinoma compared to wild-type OGT, probably due to less cellular reproduction. Our work is a sequel of our previous report on pS20 of OGT and is in line with the notion that OGT is intricately regulated by the mitotic network.

8.
Hum Mol Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324210

RESUMO

LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.

9.
Int J Cancer ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239852

RESUMO

14-3-3σ functions as an oncogene in colorectal cancer and is associated with therapy resistance. However, the mechanisms underlying these observations are not clear. The results in this report demonstrate that loss of 14-3-3σ in colorectal cancer cells leads to a decrease in tumor formation and increased sensitivity to chemotherapy. The increased sensitivity to chemotherapy is due to a decrease in the expression of UPR pathway genes in the absence of 14-3-3σ. 14-3-3σ promotes expression of the UPR pathway genes by binding to the transcription factor YY1 and preventing the nuclear localization of YY1. YY1, in the absence of 14-3-3σ, shows increased nuclear localization and binds to the promoter of the UPR pathway genes, resulting in decreased gene expression. Similarly, a YY1 mutant that cannot bind to 14-3-3σ also shows increased nuclear localization and is enriched on the promoter of the UPR pathway genes. Finally, inhibition of the UPR pathway with genetic or pharmacological approaches sensitizes colon cancer cells to chemotherapy. Our results identify a novel mechanism by which 14-3-3σ promotes tumor progression and therapy resistance in colorectal cancer by maintaining UPR gene expression.

10.
Brain Behav Immun ; 121: 384-402, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147172

RESUMO

Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of ß-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the ß isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.


Assuntos
Bacillus , Doenças Neuroinflamatórias , Bacillus/metabolismo , Animais , Camundongos , Humanos , Doenças Neuroinflamatórias/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Masculino , Encefalomielite Autoimune Experimental/metabolismo , Anti-Inflamatórios/farmacologia
11.
Clin Case Rep ; 12(8): e9278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130805

RESUMO

Key Clinical Message: Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal neurodegenerative disorder. This case highlights parkinsonism as a rare initial manifestation of sporadic CJD (sCJD), emphasizing the need for heightened clinical awareness to prevent misdiagnosis. Early and accurate diagnosis of sCJD is crucial for preventing potential iatrogenic transmission and optimizing patient management. Abstract: Creutzfeldt-Jakob disease (CJD) is a fatal neurodegenerative illness. While movement disorders may be present at the onset of the disease in about half of those with sporadic CJD (sCJD), parkinsonism is a rare initial presentation. In this article, we report a case of CJD with parkinsonism as the initial presentation of the disease. We report a 69-year-old lady with initial symptoms of gait difficulty, tremor, and bradykinesia. Later, she developed cognitive impairment, ataxia, chin tremor, and myoclonic jerks. Her condition worsened to the point of akinetic mutism. She was diagnosed with probable sCJD after detecting protein 14-3-3 in her cerebrospinal fluid and observing typical imaging features.This case report illustrates important aspects of an inevitably fatal and rapidly progressing disease's early presentation and clinical features. The uncommon initial presentations of sCJD should be considered with the intent of preventing misdiagnosis in the future. Early diagnosis of sCJD can prevent possible iatrogenic disease transmission and improve patient care.

12.
Front Mol Biosci ; 11: 1353828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144488

RESUMO

Background and Aims: Several studies have revealed that Epstein-Barr virus (EBV) infection raised the likelihood of developing Alzheimer's disease (AD) via infecting B lymphocytes. The purpose of the current investigation was to assess the possible association between EBV infection and AD. Methods: The microarray datasets GSE49628, GSE126379, GSE122063, and GSE132903 were utilized to extract DEGs by using the GEO2R tool of the GEO platform. The STRING tool was used to determine the interaction between the DEGs, and Cytoscape was used to visualize the results. The DEGs that were found underwent function analysis, including pathway and GO, using the DAVID 2021 and ClueGo/CluePedia. By using MNC, MCC, Degree, and Radiality of cytoHubba, we identified seven common key genes. Gene co-expression analysis was performed through the GeneMANIA web tool. Furthermore, expression analysis of key genes was performed through GTEx software, which have been identified in various human brain regions. The miRNA-gene interaction was performed through the miRNet v 2.0 tool. DsigDB on the Enrichr platform was utilized to extract therapeutic drugs connected to key genes. Results: In GEO2R analysis of datasets with |log2FC|≥ 0.5 and p-value <0.05, 8386, 10,434, 7408, and 759 genes were identified. A total of 141 common DEGs were identified by combining the extracted genes of different datasets. A total of 141 nodes and 207 edges were found during the PPI analysis. The DEG GO analysis with substantial alterations disclosed that they are associated to molecular functions and biological processes, such as positive regulation of neuron death, autophagy regulation of mitochondrion, response of cell to insulin stimulus, calcium signaling regulation, organelle transport along microtubules, protein kinase activity, and phosphoserine binding. Kyoto Encyclopedia of Genes and Genomes analysis discovered the correlation between the DEGs in pathways of neurodegeneration: multiple disease, cell cycle, and cGMP-PKG signaling pathway. Finally, YWHAH, YWHAG, YWHAB, YWHAZ, MAP2K1, PPP2CA, and TUBB genes were identified that are strongly linked to EBV and AD. Three miRNAs, i.e., hsa-mir-15a-5p, hsa-let-7a-5p, and hsa-mir-7-5p, were identified to regulate most of hub genes that are associated with EBV and AD. Further top 10 significant therapeutic drugs were predicted. Conclusion: We have discovered new biomarkers and therapeutic targets for AD, as well as the possible biological mechanisms whereby infection with EBV may be involved in AD susceptibility for the first time.

13.
Cureus ; 16(7): e64814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156438

RESUMO

Creutzfeldt-Jakob Disease (CJD) is a prion disease that leads to rapid mental deterioration and is always fatal. Prions are glycoproteins found in the brain. While their function is not completely understood, irregular folding of these proteins leads to prion disorders and neurodegenerative disease. CJD is extremely rare (1-2 cases per million people). A 68-year-old woman presented to the family medicine clinic with symptoms of weakness, paresthesia, and foot drop. Some weeks later she presented at the emergency department with left ankle and foot pain. All symptoms were on the left side of the body. An initial workup with labs was performed which all returned normal. Subsequently, a cerebrospinal fluid (CSF) panel was run and findings included elevated neuron-specific enolase and 14-3-3 gamma indicating a neurodegenerative disease. Further, an indeterminate real-time quaking-induced conversion (RT-QuIC) led to our diagnosis of a probable sporadic CJD. The patient was treated for symptoms and died four months following the initial presentation. Typically CJD presents with similar physical symptoms such as myoclonus. CJD is typically accompanied by severe mental deterioration including depression, memory loss, and dementia. CJD presentation without mental deterioration has only been reported in two other cases. Presenting here is a unique presentation of probable CJD that involved all the physical symptoms, including death, but the mental deterioration was absent. Clinicians should be aware of CJD and that presentation is not always standard.

14.
Sci Rep ; 14(1): 20106, 2024 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210013

RESUMO

ARHGAP25, a crucial molecule in immunological processes, serves as a Rac-specific GTPase-activating protein. Its role in cell migration and phagocyte functions, affecting the outcome of complex immunological diseases such as rheumatoid arthritis, renders it a promising target for drug research. Despite its importance, our knowledge of its intracellular interactions is still limited. This study employed proteomic analysis of glutathione S-transferase (GST)-tag pulldowns and co-immunoprecipitation from neutrophilic granulocyte cell lysate, revealing 76 candidates for potential physical interactions that complement ARHGAP25's known profile. Notably, four small GTPases (RAC2, RHOG, ARF4, and RAB27A) exhibited high affinity for ARHGAP25. The ARHGAP25-RAC2 and ARHGAP25-RHOG interactions appeared to be affected by the activation state of the small GTPases, suggesting a GTP-GDP cycle-dependent interaction. In silico dimer prediction pinpointed ARHGAP25's GAP domain as a credible binding interface, suggesting its suitability for GTP hydrolysis. Additionally, a list of Fc receptor-related kinases, phosphatases, and three of the 14-3-3 members were identified as potential partners, with in silico predictions highlighting eight binding sites, presenting novel insight on a potential regulatory mechanism for ARHGAP25.


Assuntos
Proteínas Ativadoras de GTPase , Neutrófilos , Ligação Proteica , Humanos , Proteínas Ativadoras de GTPase/metabolismo , Neutrófilos/metabolismo , Proteômica/métodos , Proteínas 14-3-3/metabolismo , Proteína RAC2 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo
15.
J Exp Bot ; 75(18): 5531-5546, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38989653

RESUMO

Fusicoccin (FC) is one of the most studied fungal metabolites to date. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as a high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase-14-3-3 receptor complex has taken center stage in explaining all FC-induced physiological effects. However, a more critical review shows that this is not evident for a number of FC-induced effects. This review challenges the notion that all FC-affected processes start with the binding to and activation of the plasma membrane ATPase, and raises the question of whether other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule. In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile making a renewed attempt with modern improved technology to answer this question; the answer might upgrade FC or its structural analogue(s) to the classification of plant hormone.


Assuntos
Glicosídeos , Glicosídeos/metabolismo , Plantas/metabolismo , Proteínas 14-3-3/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Plantas/metabolismo
16.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38988319

RESUMO

The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.


Assuntos
Proteínas 14-3-3 , Segregação de Cromossomos , Cinetocoros , Mitose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Microtúbulos/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/genética
17.
J Comp Pathol ; 212: 42-50, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986425

RESUMO

Canine ovarian epithelial tumours (OETs) are currently divided into ovarian adenomas and carcinomas, which are further inconsistently subclassified as papillary or cystic, whereas in human medicine, OETs are subdivided into several subtypes. This study aimed to establish clear morphological features enabling more consistent distinction between benign OETs and ovarian carcinomas (OvCas) as well as defining different histopathological patterns of canine OvCas. Analysis revealed a mitotic count threshold of >2 as a potential criterion for differentiating OvCas from benign OETs. Alongside ovarian adenomas, ovarian borderline tumours were introduced as a distinct category among benign OETs. OvCas exhibited five different histopathological patterns, namely papillary, solid with tubular differentiation, micropapillary, cystic and sarcomatous. Since some OvCas can morphologically overlap with other ovarian tumours, the expression of cytokeratin 7, a cytokeratin expressed in ovarian epithelium, was assessed and proved helpful, although it was not expressed in all cases. Furthermore, we investigated the expression of 14-3-3σ and cyclooxygenase 2 (COX-2). Based on the frequent expression of 14-3-3σ, this marker appears to have a role in canine OETs since it is not expressed in normal canine ovaries. The infrequent expression of COX-2 suggests that it is a poor candidate as a potential therapeutic target in canine OvCas.


Assuntos
Biomarcadores Tumorais , Carcinoma Epitelial do Ovário , Doenças do Cão , Imuno-Histoquímica , Neoplasias Ovarianas , Cães , Feminino , Animais , Neoplasias Ovarianas/veterinária , Neoplasias Ovarianas/patologia , Doenças do Cão/patologia , Carcinoma Epitelial do Ovário/veterinária , Carcinoma Epitelial do Ovário/patologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Adenoma/veterinária , Adenoma/patologia , Neoplasias Epiteliais e Glandulares/veterinária , Neoplasias Epiteliais e Glandulares/patologia
18.
Sci Rep ; 14(1): 15246, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956068

RESUMO

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Assuntos
Proteínas 14-3-3 , Ferroptose , Traumatismo por Reperfusão Miocárdica , PPAR alfa , Animais , Masculino , Camundongos , Ratos , Proteínas 14-3-3/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , PPAR alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Trends Plant Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955584

RESUMO

14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.

20.
Free Radic Biol Med ; 223: 369-383, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059513

RESUMO

Basic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood. Thus, elucidating the regulation of C. elegans HLH-30 will provide evolutionary insight into the mechanisms governing the function of bHLH transcription factor family. We report here that HLH-30 is retained in the cytoplasm mainly through its conserved Ser201 residue and that HLH-30 physically interacts with the 14-3-3 protein FTT-2 in this location. The FoxO transcription factor DAF-16 is not required for HLH-30 nuclear translocation upon stress, despite that both proteins partner to form a complex that coordinately regulates several organismal responses. Similar as described for DAF-16, the importin IMB-2 assists HLH-30 nuclear translocation, but constitutive HLH-30 nuclear localization is not sufficient to trigger its distinctive transcriptional response. Furthermore, we identify FTT-2 as the target of diethyl maleate (DEM), a GSH depletor that causes a transient nuclear translocation of HLH-30. Together, our work demonstrates that the regulation of TFEB/TFE3 and HLH-30 family members is evolutionarily conserved and that, in addition to a direct redox regulation through its conserved single cysteine residue, HLH-30 can also be indirectly regulated by a redox-dependent mechanism, probably through FTT-2 oxidation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Oxirredução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Autofagia , Transporte Proteico , Citoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA