Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Nanobiotechnology ; 22(1): 578, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300463

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic joint inflammation and cartilage damage. Current therapeutic strategies often result in side effects, necessitating the development of targeted and safer treatment options. This study introduces a novel nanotherapeutic system, 2-APB@DGP-MM, which utilizes macrophage membrane (MM)-encapsulated nanoparticles (NPs) for the targeted delivery of 2-Aminoethyl diphenylborinate (2-APB) to inflamed joints more effectively. The NPs are designed with a matrix metalloproteinase (MMP)-cleavable peptide, allowing for MMP-responsive drug release within RA microenvironment. Comprehensive in vitro and in vivo assays confirmed the successful synthesis and loading of 2-APB into the DSPE-GPLGVRGC-PEG (DGP) NPs, as well as their ability to repolarize macrophages from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. The NPs demonstrated high biocompatibility, low cytotoxicity, and enhanced cellular uptake. In a collagen-induced arthritis (CIA) mouse model, intra-articular injection of 2-APB@DGP-MM significantly reduced synovial inflammation and cartilage destruction. Histological analysis corroborated these findings, demonstrating marked improvements in joint structure and delayed disease progression. Above all, the 2-APB@DGP-MM nanotherapeutic system offers a promising and safe approach for RA treatment by modulating macrophage polarization and delivering effective agents to inflamed joints.


Assuntos
Artrite Reumatoide , Macrófagos , Nanopartículas , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Artrite Reumatoide/tratamento farmacológico , Nanopartículas/química , Células RAW 264.7 , Masculino , Camundongos Endogâmicos DBA , Artrite Experimental/tratamento farmacológico , Compostos de Boro/química , Compostos de Boro/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos
2.
Cells ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273026

RESUMO

The atrioventricular node (AVN) is a key component of the cardiac conduction system and takes over pacemaking of the ventricles if the sinoatrial node fails. IP3 (inositol 1,4,5 trisphosphate) can modulate excitability of myocytes from other regions of the heart, but it is not known whether IP3 receptor (IP3-R) activation modulates AVN cell pacemaking. Consequently, this study investigated effects of IP3 on spontaneous action potentials (APs) from AVN cells isolated from rabbit hearts. Immunohistochemistry and confocal imaging demonstrated the presence of IP3-R2 in isolated AVN cells, with partial overlap with RyR2 ryanodine receptors seen in co-labelling experiments. In whole-cell recordings at physiological temperature, application of 10 µM membrane-permeant Bt3-(1,4,5)IP3-AM accelerated spontaneous AP rate and increased diastolic depolarization rate, without direct effects on ICa,L, IKr, If or INCX. By contrast, application via the patch pipette of 5 µM of the IP3-R inhibitor xestospongin C led to a slowing in spontaneous AP rate and prevented 10 µM Bt3-(1,4,5)IP3-AM application from increasing the AP rate. UV excitation of AVN cells loaded with caged-IP3 led to an acceleration in AP rate, the magnitude of which increased with the extent of UV excitation. 2-APB slowed spontaneous AP rate, consistent with a role for constitutive IP3-R activity; however, it was also found to inhibit ICa,L and IKr, confounding its use for studying IP3-R. Under AP voltage clamp, UV excitation of AVN cells loaded with caged IP3 activated an inward current during diastolic depolarization. Collectively, these results demonstrate that IP3 can modulate AVN cell pacemaking rate.


Assuntos
Potenciais de Ação , Nó Atrioventricular , Receptores de Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato , Miócitos Cardíacos , Animais , Coelhos , Potenciais de Ação/efeitos dos fármacos , Nó Atrioventricular/efeitos dos fármacos , Nó Atrioventricular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Oxazóis/farmacologia , Masculino
3.
Exp Physiol ; 109(9): 1545-1556, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38979869

RESUMO

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.


Assuntos
Canais de Cálcio Tipo L , Cálcio , Sistema Nervoso Entérico , Motilidade Gastrointestinal , Neurônios , Tetrodotoxina , Animais , Canais de Cálcio Tipo L/metabolismo , Tetrodotoxina/farmacologia , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Camundongos Endogâmicos C57BL , Bloqueadores dos Canais de Cálcio/farmacologia , Feminino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Nicardipino/farmacologia , Compostos de Boro
4.
Ultrastruct Pathol ; 48(1): 29-41, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37970647

RESUMO

Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Assuntos
Nefropatias , Rim , Ratos , Animais , Caspase 3/metabolismo , Caspase 3/farmacologia , Aminoglicosídeos/efeitos adversos , Aminoglicosídeos/metabolismo , Ratos Wistar , Creatinina/metabolismo , Creatinina/farmacologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Antibacterianos/efeitos adversos , Antioxidantes/farmacologia , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
6.
Chem Biol Interact ; 382: 110636, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454925

RESUMO

Calcium oxalate (CaOx) stones are the most prevalent type of kidney stones. CaOx crystals can stimulate reactive oxygen species (ROS) generation and induce renal oxidative stress to promote stone formation. Intracellular Ca2+ is an important signaling molecule, and an elevation of cytoplasmic Ca2+ levels could trigger oxidative stress. Our previous study has revealed that upregulation of Ang II/AT1R promoted renal oxidative stress during CaOx exposure. IP3/IP3R/Ca2+ signaling pathway activated via Ang II/AT1R is involved in several diseases, but its role in stone formation has not been reported. Herein, we focus on the role of AT1R/IP3/IP3R-mediated Ca2+ release in CaOx crystals-induced oxidative stress and explore whether inhibition of this pathway could alleviate renal oxidative stress. NRK-52E cells were exposed to CaOx crystals pretreated with AT1R inhibitor losartan or IP3R inhibitor 2-APB, and glyoxylic acid monohydrate-induced CaOx stone-forming rats were treated with losartan or 2-APB. The intracellular Ca2+ levels, ROS levels, oxidative stress indexes, and the gene expression of this pathway were detected. Our results showed that CaOx crystals activated AT1R to promote IP3/IP3R-mediated Ca2+ release, leading to increased cytoplasmic Ca2+ levels. The Ca2+ elevation was able to stimulate NOX2 and NOX4 to generate ROS, induce oxidative stress, and upregulate the expression of stone-related proteins. 2-APB and losartan reversed the referred effects, reduced CaOx crystals deposition and alleviated tissue injury in the rat kidneys. In summary, our results indicated that CaOx crystals promoted renal oxidative stress by activating the AT1R/IP3/IP3R/Ca2+ pathway. Inhibition of AT1R/IP3/IP3R-mediated Ca2+ release protected against CaOx crystals-induced renal oxidative stress. 2-APB and losartan might be promising preventive and therapeutic agents for the treatment of kidney stone disease.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Ratos , Animais , Oxalato de Cálcio/química , Espécies Reativas de Oxigênio/metabolismo , Losartan/metabolismo , Rim/metabolismo , Cálculos Renais/induzido quimicamente , Cálculos Renais/prevenção & controle , Estresse Oxidativo
7.
Adv Exp Med Biol ; 1427: 53-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322335

RESUMO

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associated with pulmonary hypertension (PH). Rats exposed to CIH develop systemic and lung oxidative stress, pulmonary vascular remodeling, and PH and overexpress Stim-activated TRPC-ORAI channels (STOC) in the lung. Previously, we demonstrated that 2-aminoethyl-diphenylborinate (2-APB)-treatment, a STOC-blocker, prevents PH and the overexpression of STOC induced by CIH. However, 2-APB did not prevent systemic and pulmonary oxidative stress. Accordingly, we hypothesize that the contribution of STOC in the development of PH induced by CIH is independent of oxidative stress. We measured the correlation between right ventricular systolic pressure (RVSP) and lung malondialdehyde (MDA) with the gene expression of STOC and morphological parameters in the lung from control, CIH-treated, and 2-APB-treated rats. We found correlations between RVSP and increased medial layer and STOC pulmonary levels. 2-APB-treated rats showed a correlation between RVSP and the medial layer thickness, α-actin-ir, and STOC, whereas RVSP did not correlate with MDA levels in CIH and 2-APB-treated rats. CIH rats showed correlations between lung MDA levels and the gene expression of TRPC1 and TRPC4. These results suggest that STOC channels play a key role in developing CIH-induced PH that is independent from lung oxidative stress.


Assuntos
Hipertensão Pulmonar , Hipertensão , Ratos , Animais , Hipertensão Pulmonar/etiologia , Remodelação Vascular , Estresse Oxidativo , Hipóxia
8.
Redox Biol ; 61: 102654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889081

RESUMO

2-aminoethoxydiphenyl borate (2-APB) is commonly used as a tool to modulate calcium signaling in physiological studies. 2-APB has a complex pharmacology and acts as activator or inhibitor of a variety of Ca2+ channels and transporters. While unspecific, 2-APB is one of the most-used agents to modulate store-operated calcium entry (SOCE) mediated by the STIM-gated Orai channels. Due to its boron core structure, 2-APB tends to readily hydrolyze in aqueous environment, a property that results in a complex physicochemical behavior. Here, we quantified the degree of hydrolysis in physiological conditions and identified the hydrolysis products diphenylborinic acid and 2-aminoethanol by NMR. Notably, we detected a high sensitivity of 2-APB/diphenylborinic acid towards decomposition by hydrogen peroxide to compounds such as phenylboronic acid, phenol, and boric acid, which were, in contrast to 2-APB itself and diphenylborinic acid, insufficient to affect SOCE in physiological experiments. Consequently, the efficacy of 2-APB as a Ca2+ signal modulator strongly depends on the reactive oxygen species (ROS) production within the experimental system. The antioxidant behavior of 2-APB towards ROS and its resulting decomposition are inversely correlated to its potency to modulate Ca2+ signaling as shown by electron spin resonance spectroscopy (ESR) and Ca2+ imaging. Finally, we observed a strong inhibitory effect of 2-APB, i.e., its hydrolysis product diphenylborinic acid, on NADPH oxidase (NOX2) activity in human monocytes. These new 2-APB properties are highly relevant for Ca2+ and redox signaling studies and for pharmacological application of 2-APB and related boron compounds.


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Humanos , Canais de Cálcio/metabolismo , NADPH Oxidase 2 , Espécies Reativas de Oxigênio/farmacologia , Cálcio/metabolismo
9.
Mitochondrion ; 69: 95-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758857

RESUMO

Mitochondrial dysfunction is closely linked with the pathophysiology of several neurodegenerative disorders including Parkinson's disease (PD). Despite several therapeutic advancements related to symptomatic modification of PD pathology, strategies targeting mitochondrial dysfunctions remain largely elusive. Recently, transient receptor potential (TRP) channels have been shown to play a pivotal role in the control of mitochondrial and neuronal functioning in PD. In this study, the effect of 2-aminoethoxydiphenyl borate (2-APB), TRP channel blocker was investigated in the context of mitochondrial dysfunctions in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-administered Sprague Dawley rats. MPP+-treated SH-SY5Y cells exhibited reductions in cell viability, generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Co-treatment with 2-APB led to an increase in cell viability, reduction in intracellular and mitochondrial ROS and improvement in mitochondrial membrane potential compared to MPP+-treated SH-SY5Y cells. In addition, intranigral administration of MPTP led to a significant reduction in motor function in the rats. Fourteen days of 2-APB (3 and 10 mg/kg, i.p.) treatment improved behavioural parameters. MPTP-induced decrease in complex I activity and mitochondrial potential were also blocked by 2-APB in the mitochondria isolated from the brain regions i.e. midbrain and striatum. MPTP-induced decrease in tyrosine hydroxylase levels were also restored by 2-APB. Moreover, MPTP-induced reduction in proteins involved in mitochondrial biogenesis, viz. peroxisome proliferator-activated-receptor-gamma coactivator and mitochondrial transcription factor-A were increased after 2-APB treatment in vivo. In summary, 2-APB has a promising neuroprotective role in the MPP+/MPTP models of PD via targeting mitochondrial dysfunctions and biogenesis.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Ratos , Animais , Camundongos , 1-Metil-4-fenilpiridínio/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Doença de Parkinson/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Neurônios Dopaminérgicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36740004

RESUMO

Exposure of Drosophila skeletal muscle to bacterial lipopolysaccharides (LPS) rapidly and transiently hyperpolarizes membrane potential. However, the mechanism responsible for hyperpolarization remains unclear. The resting membrane potential of the cells is maintained through multiple mechanisms. This study investigated the possibility of LPS activating calcium-activated potassium channels (KCa) and/or K2p channels. 2-Aminoethyl diphenylborinate (2-APB), blocks uptake of Ca2+ into the endoplasmic reticulum (ER); thus, limiting release from ryanodine-sensitive internal stores to reduce the function of KCa channels. Exposure to 2-APB produces waves of hyperpolarization even during desensitization of the response to LPS and in the presence of doxapram. This finding in this study suggests that doxapram blocked the acid-sensitive K2p tandem-pore channel subtype known in mammals. Doxapram blocked LPS-induced hyperpolarization and depolarized the muscles as well as induced motor neurons to produce evoked excitatory junction potentials (EJPs). This was induced by depolarizing motor neurons, similar to the increase in extracellular K+ concentration. The hyperpolarizing effect of LPS was not blocked by decreased extracellular Ca2+or the presence of Cd2+. LPS appears to transiently activate doxapram sensitive K2p channels independently of KCa channels in hyperpolarizing the muscle. Septicemia induced by gram-negative bacteria results in an increase in inflammatory cytokines, primarily induced by bacterial LPS. Currently, blockers of LPS receptors in mammals are unknown; further research on doxapram and other K2p channels is warranted. (220 words).


Assuntos
Doxapram , Canais de Potássio de Domínios Poros em Tandem , Animais , Doxapram/farmacologia , Potenciais da Membrana , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Lipopolissacarídeos/toxicidade , Rianodina/farmacologia , Mamíferos
11.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677928

RESUMO

2-Aminoethoxydiphenyl borate (2-APB), a boron-containing compound, is a multitarget compound with potential as a drug precursor and exerts various effects in systems of the human body. Ion channels are among the reported targets of 2-APB. The effects of 2-APB on voltage-gated potassium channels (KV) have been reported, but the types of KV channels that 2-APB inhibits and the inhibitory mechanism remain unknown. In this paper, we discovered that 2-APB acted as an inhibitor of three representative human KV1 channels. 2-APB significantly blocked A-type Kv channel KV1.4 in a concentration-dependent manner, with an IC50 of 67.3 µM, while it inhibited the delayed outward rectifier channels KV1.2 and KV1.3, with IC50s of 310.4 µM and 454.9 µM, respectively. Further studies on KV1.4 showed that V549, T551, A553, and L554 at the cavity region and N-terminal played significant roles in 2-APB's effects on the KV1.4 channel. The results also indicated the importance of fast inactivation gating in determining the different effects of 2-APB on three channels. Interestingly, a current facilitation phenomenon by a short prepulse after 2-APB application was discovered for the first time. The docked modeling revealed that 2-APB could form hydrogen bonds with different sites in the cavity region of three channels, and the inhibition constants showed a similar trend to the experimental results. These findings revealed new molecular targets of 2-APB and demonstrated that 2-APB's effects on KV1 channels might be part of the reason for the diverse bioactivities of 2-APB in the human body and in animal models of human disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Compostos de Boro/farmacologia , Canais Iônicos
12.
Reprod Sci ; 30(1): 203-220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715551

RESUMO

The intracellular signaling pathways that regulate myometrial contractions can be targeted by drugs for tocolysis. The agents, 2-APB, glycyl-H-1152, and HC-067047, have been identified as inhibitors of uterine contractility and may have tocolytic potential. However, the contraction-blocking potency of these novel tocolytics was yet to be comprehensively assessed and compared to agents that have seen greater scrutiny, such as the phosphodiesterase inhibitors, aminophylline and rolipram, or the clinically used tocolytics, nifedipine and indomethacin. We determined the IC50 concentrations (inhibit 50% of baseline contractility) for 2-APB, glycyl-H-1152, HC-067047, aminophylline, rolipram, nifedipine, and indomethacin against spontaneous ex vivo contractions in pregnant human myometrium, and then compared their tocolytic potency. Myometrial strips obtained from term, not-in-labor women, were treated with cumulative concentrations of the contraction-blocking agents. Comprehensive dose-response curves were generated. The IC50 concentrations were 53 µM for 2-APB, 18.2 µM for glycyl-H-1152, 48 µM for HC-067047, 318.5 µM for aminophylline, 4.3 µM for rolipram, 10 nM for nifedipine, and 59.5 µM for indomethacin. A single treatment with each drug at the determined IC50 concentration was confirmed to reduce contraction performance (AUC) by approximately 50%. Of the three novel tocolytics examined, glycyl-H-1152 was the most potent inhibitor. However, of all the drugs examined, the overall order of contraction-blocking potency in decreasing order was nifedipine > rolipram > glycyl-H-1152 > HC-067047 > 2-APB > indomethacin > aminophylline. These data provide greater insight into the contraction-blocking properties of some novel tocolytics, with glycyl-H-1152, in particular, emerging as a potential novel tocolytic for preventing preterm birth.


Assuntos
Nascimento Prematuro , Tocolíticos , Recém-Nascido , Gravidez , Humanos , Feminino , Tocolíticos/farmacologia , Nifedipino/farmacologia , Nifedipino/metabolismo , Miométrio/metabolismo , Rolipram/metabolismo , Rolipram/farmacologia , Aminofilina/metabolismo , Aminofilina/farmacologia , Nascimento Prematuro/metabolismo , Contração Uterina , Indometacina/metabolismo , Indometacina/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35882668

RESUMO

The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Estrutura Secundária de Proteína , Mentol , Temperatura , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Mamíferos/metabolismo
14.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806455

RESUMO

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Idoso , Boratos/farmacologia , Isquemia Encefálica/patologia , Circulação Cerebrovascular/fisiologia , Humanos , Infarto , Neuroproteção , Espécies Reativas de Oxigênio
15.
Front Physiol ; 13: 841828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370769

RESUMO

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associate with pulmonary hypertension. Rats exposed to CIH develop lung vascular remodeling and pulmonary hypertension, which paralleled the upregulation of stromal interaction molecule (STIM)-activated TRPC-ORAI Ca2+ channels (STOC) in the lung, suggesting that STOC participate in the pulmonary vascular alterations. Accordingly, to evaluate the role played by STOC in pulmonary hypertension we studied whether the STOC blocker 2-aminoethoxydiphenyl borate (2-APB) may prevent the vascular remodeling and the pulmonary hypertension induced by CIH in a rat model of OSA. We assessed the effects of 2-APB on right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, α-actin and proliferation marker Ki-67 levels in pulmonary arterial smooth muscle cells (PASMC), mRNA levels of STOC subunits, and systemic and pulmonary oxidative stress (TBARS) in male Sprague-Dawley (200 g) rats exposed to CIH (5% O2, 12 times/h for 8h) for 28 days. At 14 days of CIH, osmotic pumps containing 2-APB (10 mg/kg/day) or its vehicle were implanted and rats were kept for 2 more weeks in CIH. Exposure to CIH for 28 days raised RVSP > 35 mm Hg, increased the medial layer thickness and the levels of α-actin and Ki-67 in PASMC, and increased the gene expression of TRPC1, TRPC4, TRPC6 and ORAI1 subunits. Treatment with 2-APB prevented the raise in RVSP and the increment of the medial layer thickness, as well as the increased levels of α-actin and Ki-67 in PASMC, and the increased gene expression of STOC subunits. In addition, 2-APB did not reduced the lung and systemic oxidative stress, suggesting that the effects of 2-APB on vascular remodeling and pulmonary hypertension are independent on the reduction of the oxidative stress. Thus, our results supported that STIM-activated TRPC-ORAI Ca2+ channels contributes to the lung vascular remodeling and pulmonary hypertension induced by CIH.

16.
Acta Pharm Sin B ; 12(2): 723-734, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256942

RESUMO

Genetic gain-of-function mutations of warm temperature-sensitive transient receptor potential vanilloid 3 (TRPV3) channel cause Olmsted syndrome characterized by severe itching and keratoderma, indicating that pharmacological inhibition of TRPV3 may hold promise for therapy of chronic pruritus and skin diseases. However, currently available TRPV3 tool inhibitors are either nonselective or less potent, thus impeding the validation of TRPV3 as therapeutic target. Using whole-cell patch-clamp and single-channel recordings, we report the identification of two natural dicaffeoylquinic acid isomers isochlorogenic acid A (IAA) and isochlorogenic acid B (IAB) that selectively inhibit TRPV3 currents with IC50 values of 2.7 ± 1.3 and 0.9 ± 0.3 µmol/L, respectively, and reduce the channel open probability to 3.7 ± 1.2% and 3.2 ± 1.1% from 26.9 ± 5.5%, respectively. In vivo evaluation confirms that both IAA and IAB significantly reverse the ear swelling of dermatitis and chronic pruritus. Furthermore, the isomer IAB is able to rescue the keratinocyte death induced by TRPV3 agonist carvacrol. Molecular docking combined with site-directed mutations reveals two residues T636 and F666 critical for the binding of the two isomers. Taken together, our identification of isochlorogenic acids A and B that act as specific TRPV3 channel inhibitors and gating modifiers not only provides an essential pharmacological tool for further investigation of the channel pharmacology and pathology, but also holds developmental potential for treatment of dermatitis and chronic pruritus.

17.
J Biol Chem ; 298(3): 101706, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150742

RESUMO

Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.


Assuntos
Cimenos , Monoterpenos , Canais de Cátion TRPV , Cimenos/farmacologia , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Canais de Cátion TRPV/metabolismo
18.
Pflugers Arch ; 474(3): 315-342, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098357

RESUMO

The ruminal epithelium absorbs large quantities of NH4+ and Ca2+. A role for TRPV3 has emerged, but data on TRPV4 are lacking. Furthermore, short-chain fatty acids (SCFA) stimulate ruminal Ca2+ and NH4+ uptake in vivo and in vitro, but the pathway is unclear. Sequencing of the bovine homologue (bTRPV4) revealed 96.79% homology to human TRPV4. Two commercial antibodies were tested using HEK-293 cells overexpressing bTRPV4, which in ruminal protein detected a weak band at the expected ~ 100 kDa and several bands ≤ 60 kDa. Immunofluorescence imaging revealed staining of the apical membrane of the stratum granulosum for bTRPV3 and bTRPV4, with cytosolic staining in other layers of the ruminal epithelium. A similar expression pattern was observed in a multilayered ruminal cell culture which developed resistances of > 700 Ω · cm2 with expression of zonula occludens-1 and claudin-4. In Ussing chambers, 2-APB and the TRPV4 agonist GSK1016790A stimulated the short-circuit current across native bovine ruminal epithelia. In whole-cell patch-clamp recordings on HEK-293 cells, bTRPV4 was shown to be permeable to NH4+, K+, and Na+ and highly sensitive to GSK1016790A, while effects of butyrate- were insignificant. Conversely, bTRPV3 was strongly stimulated by 2-APB and by butyrate- (pH 6.4 > pH 7.4), but not by GSK1016790A. Fluorescence calcium imaging experiments suggest that butyrate- stimulates both bTRPV3 and bTRPV4. While expression of bTRPV4 appears to be weaker, both channels are candidates for the ruminal transport of NH4+ and Ca2+. Stimulation by SCFA may involve cytosolic acidification (bTRPV3) and cell swelling (bTRPV4).


Assuntos
Butiratos , Canais de Cátion TRPV , Animais , Transporte Biológico/fisiologia , Butiratos/metabolismo , Bovinos , Epitélio/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Canais de Cátion TRPV/metabolismo
19.
Mol Neurobiol ; 59(3): 1528-1542, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997907

RESUMO

Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson's disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.


Assuntos
Doença de Parkinson , Canais de Cátion TRPM , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Neuroproteção , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPM/metabolismo
20.
Neurobiol Learn Mem ; 188: 107587, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051621

RESUMO

Intracellular calcium stores (ICS) play a dynamic role in neuronal calcium (Ca2+) homeostasis both by buffering Ca2+ excess in the cytoplasm or providing an additional source of Ca2+ when concentration increase is needed. However, in spite of the large body of evidence showing Ca2+ as an essential second messenger in many signaling cascades underlying synaptic plasticity, the direct involvement of the intracellular Ca2+-release channels (ICRCs) in memory processing has been highly overlooked. Here we investigated the role of the ICRC inositol 1,4,5-trisphosphate receptor (IP3R) activity during different memory phases using pharmacological inhibition in the dorsal hippocampus during contextual fear conditioning. We first found that post-training administration of the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) impaired memory consolidation in a dose and time-dependent manner. Inhibiting IP3Rs also disrupted memory retrieval. Contextual fear memory reconsolidation or extinction, however, were not sensitive to IP3R blockade. Taken together, our results indicate that hippocampal IP3Rs play an important role in contextual fear memory consolidation and retrieval.


Assuntos
Cálcio , Medo/fisiologia , Hipocampo/fisiologia , Receptores de Inositol 1,4,5-Trifosfato , Consolidação da Memória/fisiologia , Plasticidade Neuronal , Animais , Região CA3 Hipocampal , Extinção Psicológica/fisiologia , Inibição Psicológica , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA