RESUMO
In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.
Assuntos
Laticínios , Leite , RNA Viral , Animais , Bovinos , Leite/virologia , Estados Unidos , Laticínios/virologia , RNA Viral/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Pasteurização , Influenza Aviária/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Highly pathogenic avian influenza virus (HPAIV) has caused widespread outbreaks in poultry in the Americas. Because of the duration and extent of these outbreaks, vaccine use may be an additional tool to limit virus spread. Three vaccines were evaluated for efficacy in chickens against a current North American clade 2.3.4.4b H5 HPAIV isolate, A/turkey/Indiana/3703-003/2022 H5N1. The vaccines included: 1) a commercial inactivated reverse genetics (rg) generated H5N1 product with a clade 2.3.4.4c H5 hemagglutinin (HA) (rgH5N1); 2) a commercial alphavirus RNA particle (RP) vaccine with the TK/IN/22 HA; and 3) an in-house inactivated rg produced vaccine with the TK/IN/22 HA and a North American lineage N9 neuraminidase (NA) (SEP-22-N9). Both inactivated vaccines were produced with HA genes that were modified to be low pathogenic and with the remaining genes from the PR8 influenza strain. All vaccines provided 100% protection against mortality and morbidity and all vaccines reduced virus shed by the oropharyngeal and cloacal routes significantly compared to sham vaccinates. However, differences were observed among the vaccines in quantities of virus shed at two- and four-days post challenge (DPC). To determine if infected birds could be identified after vaccination to aid surveillance programs, serum was collected from the RP and SEP-22-N9 vaccine groups at 7, 10, and 14 DPC to detect antibody to the NA and nucleoprotein (NP) of the challenge virus by enzyme linked lectin assay (ELLA) and ELISA. As early as 7DPC ELLA detected antibody in sera from 100% of the chickens in the RP vaccinated group and 70% of the chickens in the SEP-22-N9 vaccinated group. Antibody to the NP was detected by commercial ELISA in more than 50% of the birds in the RP vaccinated group at each time point.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Vacinas de Produtos Inativados , América do Norte , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genéticaRESUMO
In southern Africa, clade 2.3.4.4B H5N1 high pathogenicity avian influenza (HPAI) was first detected in South African (SA) poultry in April 2021, followed by outbreaks in poultry or wild birds in Lesotho and Botswana. In this study, the complete or partial genomes of 117 viruses from the SA outbreaks in 2021-2022 were analyzed to decipher the sub-regional spread of the disease. Our analysis showed that seven H5N1 sub-genotypes were associated with the initial outbreaks, but by late 2022 only two sub-genotypes still circulated. Furthermore, SA poultry was not the source of Lesotho's outbreaks, and the latter was most likely an introduction from wild birds. Similarly, SA and Botswana's outbreaks in 2021 were unrelated, but viruses of Botswana's unique sub-genotype were introduced into SA later in 2022 causing an outbreak in ostriches. At least 83% of SA's commercial poultry cases in 2021-2022 were point introductions from wild birds. Like H5N8 HPAI in 2017-2018, a coastal seabird-restricted sub-lineage of H5N1 viruses emerged in the Western Cape province in 2021 and spread to Namibia, causing mortalities in Cape Cormorants. In SA ~24,000 of this endangered species died, and the loss of >300 endangered African penguins further threatens biodiversity.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Struthioniformes , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virulência , Epidemiologia Molecular , Filogenia , Surtos de Doenças/veterinária , Aves Domésticas , Animais Selvagens , África Austral/epidemiologiaRESUMO
Highly pathogenic (HP) avian influenza viruses (AIVs) of the clade 2.3.4.4 goose/Guangdong/1996 H5 lineage continue to be a problem in poultry and wild birds in much of the world. The recent incursion of a H5N1 clade 2.3.4.4b HP AIV from this lineage into North America has resulted in widespread outbreaks in poultry and consistent detections of the virus across diverse families of birds and occasionally mammals. To characterize the pathobiology of this virus in mallards (Anas platyrhynchos), which are a primary reservoir of AIV, a challenge study was conducted with 2-week-old birds. The 50% bird infectious dose was determined to be < 2 log10 50% egg infectious doses (EID50) and all exposed ducks, including ducks co-housed with inoculated ducks, were infected. Infection appeared to be subclinical for 58.8% (20/34) of the ducks, one duck was lethargic, about 20% developed neurological signs and were euthanized, and 18% developed corneal opacity. The mallards shed virus by both the oral and cloacal routes within 24-48â h post-infection. Oral shedding substantially decreased by 6-7 days post-infection, but 65% of the ducks continued to shed virus cloacally through 14 days post-exposure (DPE) for the direct inoculates and 13 DPE for contact-exposed ducks. Based on the high transmissibility, high virus shed titres, and mild-to-moderate disease, mallards could serve as efficient reservoirs to amplify and disseminate recent North American clade 2.3.4.4b viruses.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Patos , Animais Selvagens , Aves Domésticas , MamíferosRESUMO
Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018-2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.
Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Patos , Fezes , Vírus da Influenza A/genética , Mamíferos , Filogenia , VirulênciaRESUMO
In April 2020, two Whooper Swans (Cygnus cygnus) and one Swan Goose (Anser cygnoides) were found dead at three different locations in western Mongolia. Virus isolation from organs taken from the carcasses and full genome sequencing revealed that all three birds were positive for highly pathogenic H5N6 avian influenza virus (HPAIV) belonging to subclade 2.3.4.4h. Confirming similar reports from central Mongolia and western China, these findings have important implications for the monitoring, control, and management of HPAIVs in wild bird and commercial poultry populations in Mongolia.
Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Patos , Influenza Aviária/epidemiologia , Mongólia/epidemiologia , FilogeniaRESUMO
In January 2020, the subclade 2.3.4.4h of highly pathogenic avian influenza (H5N6) virus infected migratory whooper swans and mute swans in Xinjiang, western China. The virus is lethal to chickens and ducks but has low pathogenicity in mice. Antigenically, this subclade is similar to the H5N1 vaccine seed virus Re-11.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Galinhas , China/epidemiologia , Surtos de Doenças , Patos , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Camundongos , FilogeniaRESUMO
Since it firstly emerged in China in 2013, clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses (HPAIVs) has rapidly replaced predominant H5N1 to become the dominant H5 subtype in China, especially in ducks. Not only endemic in China, it also crossed the geographical barrier and emerged in South Korea, Japan, and Europe. Here, we analyzed the genetic properties of the clade 2.3.4.4 H5N6 HPAIVs with full genome sequences available online together with our own isolates. Phylogenetic analysis showed that clade 2.3.4.4 H5N6 HPAIVs continuously reassorted with local H5, H6, and H7N9/H9N2. Species analysis reveals that aquatic poultry and migratory birds became the dominant hosts of H5N6. Adaption to aquatic poultry might help clade 2.3.4.4 H5N6 better adapt to migratory birds, thus enabling it to become endemic in China. Besides, migratory birds might help clade 2.3.4.4 H5N6 transmit all over the world. Clade 2.3.4.4 H5N6 HPAIVs also showed a preference for α2,6-SA receptors when compared to other avian origin influenza viruses. Experiments in vitro and in vivo revealed that clade 2.3.4.4 H5N6 HPAIVs exhibited high replication efficiency in both avian and mammal cells, and it also showed high pathogenicity in both mice and chickens, demonstrating high risk to public health. Considering all the factors together, adaption to aquatic poultry and migratory birds helps clade 2.3.4.4 H5N6 overcome the geographical isolation, and it has potential to be the next influenza pandemic in the world, making it worthy of our attention.
RESUMO
Genetic reassortments between highly pathogenic avian influenza (HPAI) H5 subtype viruses with different neuraminidase (NA) subtypes have increased in prevalence since 2010 in wild birds and poultry from China. The HA gene slightly evolved from clade 2.3.4 to clade 2.3.4.4, raising the question of whether novel clade 2.3.4.4 HA broke the balance with N1 but is matched well with NAx to drive viral epidemics. To clarify the role of compatibility between HA and NA on the prevalence of H5Nx subtypes, we constructed 10 recombinant viruses in which the clade 2.3.4 or clade 2.3.4.4 HA genes were matched with different NA (N1, N2 and N8) genes and evaluated viral characteristics and pathogenicity. Combinations between clade 2.3.4 HA and N1 or between clade 2.3.4.4 HA and NAx, but not between clade 2.3.4.4 HA and N1, or between clade 2.3.4 HA and NAx, promoted viral growth, NA activity, thermostability, low-pH stability and pathogenicity in chicken and mice. These findings suggest that both clade 2.3.4 HA/N1 and clade 2.3.4.4 HA/NAx displayed a better match, which could promote the increased prevalence of clade 2.3.4 H5N1 AIV (prior to 2010) and clade 2.3.4.4 H5Nx AIV (since 2010) in China, respectively.
Assuntos
Doenças Transmissíveis Emergentes/veterinária , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Neuraminidase/genética , Vírus Reordenados/genética , Animais , Animais Selvagens/virologia , Galinhas , China/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Feminino , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A/classificação , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Aves Domésticas/virologia , Proteínas RecombinantesRESUMO
BACKGROUND: From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. Three isolates were selected for characterization in turkeys: the US index isolate from December 2014 (A/northern pintail/WA/40964/2014), and two poultry isolates from April 2015 (A/chicken/IA/13388/2015 and A/turkey/MN/12528/2015). RESULTS: Four week old broad-breasted white turkeys were inoculated with one of three doses (102, 104 or 106 50% egg infectious doses [EID50] per bird) of each of the isolates to evaluate infectious dose and pathogenesis. The mean bird infectious dose of A/northern pintail/WA/40964/2014 and A/turkey/MN/12528/2015 was 105 EID50 per bird, but was 103 EID50 per bird for A/chicken/IA/13388/2015, suggesting the latter had greater adaptation to gallinaceous birds. All three isolates had unusually long mean death time of 5.3-5.9 days post challenge, and the primary clinical signs were severe lethargy and neurological signs which started no more than 24 h before death (the average pre-clinical period was 4 days). Infected turkeys also shed high levels of virus by both the oropharyngeal and cloacal routes. CONCLUSIONS: The unusually long mean death times, high levels of virus in feces, and increased adaptation of the later viruses may have contributed to the rapid spread of the virus during the peak of the outbreak.