Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35449, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170175

RESUMO

Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.

2.
Plant Physiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074178

RESUMO

Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we used CRISPR/Cas9 to generate loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that two closely related PP2C phosphatases, Pic3 (PP2C immunity-associated candidate 3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and two independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense related genes. RG-pic3/RG-pic12 double mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.

3.
Pathogens ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38787262

RESUMO

Enteroviruses (EV) are important pathogens causing human disease with various clinical manifestations. To date, treatment of enteroviral infections is mainly supportive since no vaccination or antiviral drugs are approved for their prevention or treatment. Here, we describe the antiviral properties and mechanisms of action of leucoverdazyls-novel heterocyclic compounds with antioxidant potential. The lead compound, 1a, demonstrated low cytotoxicity along with high antioxidant and virus-inhibiting activity. A viral strain resistant to 1a was selected, and the development of resistance was shown to be accompanied by mutation of virus-specific non-structural protein 2C. This resistant virus had lower fitness when grown in cell culture. Taken together, our results demonstrate high antiviral potential of leucoverdazyls as novel inhibitors of enterovirus replication and support previous evidence of an important role of 2C proteins in EV replication.

4.
Plant Biotechnol J ; 22(9): 2424-2434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38600705

RESUMO

The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.


Assuntos
Resistência à Doença , Etilenos , Manihot , Doenças das Plantas , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Etilenos/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Xanthomonas axonopodis/patogenicidade , Plantas Geneticamente Modificadas , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
5.
Front Cell Infect Microbiol ; 14: 1347615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465233

RESUMO

Picornaviruses, which are positive-stranded, non-enveloped RNA viruses, are known to infect people and animals with a broad spectrum of diseases. Among the nonstructural proteins in picornaviruses, 2C proteins are highly conserved and exhibit multiple structural domains, including amphipathic α-helices, an ATPase structural domain, and a zinc finger structural domain. This review offers a comprehensive overview of the functional structures of picornaviruses' 2C protein. We summarize the mechanisms by which the 2C protein enhances viral replication. 2C protein interacts with various host factors to form the replication complex, ultimately promoting viral replication. We review the mechanisms through which picornaviruses' 2C proteins interact with the NF-κB, RIG-I, MDA5, NOD2, and IFN pathways, contributing to the evasion of the antiviral innate immune response. Additionally, we provide an overview of broad-spectrum antiviral drugs for treating various enterovirus infections, such as guanidine hydrochloride, fluoxetine, and dibucaine derivatives. These drugs may exert their inhibitory effects on viral infections by targeting interactions with 2C proteins. The review underscores the need for further research to elucidate the precise mechanisms of action of 2C proteins and to identify additional host factors for potential therapeutic intervention. Overall, this review contributes to a deeper understanding of picornaviruses and offers insights into the antiviral strategies against these significant viral pathogens.


Assuntos
Picornaviridae , Humanos , Animais , NF-kappa B/metabolismo , RNA , Replicação Viral , Antivirais/farmacologia , Relação Estrutura-Atividade
6.
Autophagy ; : 1-28, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084826

RESUMO

Senecavirus A (SVA) is a newly emerging picornavirus associated with swine vesicular lesions and neonatal mortality, threatening the global pig industry. Despite sustained efforts, the molecular mechanisms of SVA pathogenesis have not yet been fully elucidated. Here, we demonstrate for the first time that SVA infection can induce complete mitophagy in host cells, which depends on SVA replication. Mitophagy has been subsequently proven to promote SVA replication in host cells. Genome-wide screening of SVA proteins involved in inducing mitophagy showed that although VP2, VP3, 2C, and 3A proteins can independently induce mitophagy, only the 2C protein mediates mitophagy through direct interaction with TUFM (Tu translation elongation factor, mitochondrial). The glutamic acids at positions 196 and 211 of TUFM were shown to be two key sites for its interaction with 2C protein. Moreover, TUFM was discovered to interact directly with BECN1 and indirectly with the ATG12-ATG5 conjugate. Further experiments revealed that TUFM needs to undergo ubiquitination modification before being recognized by the macroautophagy/autophagy receptor protein SQSTM1/p62, and E3 ubiquitin ligase RNF185 catalyzes K27-linked polyubiquitination of TUFM through the interaction between RNF185's transmembrane domain 1 and TUFM to initiate SVA-induced mitophagy. The ubiquitinated TUFM is recognized and bound by SQSTM1, which in turn interacts with MAP1LC3/LC3, thereby linking the 2C-anchored mitochondria to the phagophore for sequestration into mitophagosomes, which ultimately fuse with lysosomes to achieve complete mitophagy. Overall, our results elucidated the molecular mechanism by which SVA induces mitophagy to promote self-replication and provide new insights into SVA pathogenesis.Abbreviations: aa: amino acid; Baf A1: bafilomycin A1; BHK-21: baby hamster kidney-21; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; hpi: hours post-infection; hpt: hours post-transfection; IPTG: isopropyl ß-D-1-thiogalactopyranoside; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor-1; MOI: multiplicity of infection; mRFP: monomeric red fluorescent protein; MS: mass spectrometry; ORF: open reading frame; PBS: phosphate-buffered saline; SD: standard deviation; SQSTM1/p62: sequestosome 1; ST: swine testis; SVA: Senecavirus A; TCID50: 50% tissue culture infectious dose; TIMM23: translocase of inner mitochondrial membrane 23; TM: transmembrane; TOMM20: translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongation factor, mitochondrial; Ub: ubiquitin; UV: ultraviolet; VDAC1: voltage dependent anion channel 1; WT: wild-type; µg: microgram; µm: micrometer; µM: micromole.

7.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847581

RESUMO

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Assuntos
Infecções por Coxsackievirus , Humanos , Enterovirus Humano A/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/virologia , Imunidade Inata , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Interferon beta/metabolismo
8.
Plants (Basel) ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446979

RESUMO

Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.

9.
ChemMedChem ; 18(10): e202200541, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792530

RESUMO

The Enterovirus (EV) genus includes several important human and animal pathogens. EV-A71, EV-D68, poliovirus (PV), and coxsackievirus (CV) outbreaks have affected millions worldwide, causing a range of upper respiratory, skin, and neuromuscular diseases, including acute flaccid myelitis, and hand-foot-and-mouth disease. There are no FDA-approved antiviral therapeutics for these enteroviruses. This study describes novel antiviral compounds targeting the conserved non-structural viral protein 2C with low micromolar to nanomolar IC50 values. The selection of resistant mutants resulted in amino acid substitutions in the viral capsid protein, implying these compounds may play a role in inhibiting the interaction of 2C and the capsid protein. The assembly and encapsidation stages of the viral life cycle still need to be fully understood, and the inhibitors reported here could be useful probes in understanding these processes.


Assuntos
Infecções por Enterovirus , Enterovirus , Doenças Neuromusculares , Animais , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Infecções por Enterovirus/tratamento farmacológico
10.
Acta Pharm Sin B ; 12(4): 1542-1566, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847514

RESUMO

Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.

11.
Cell Rep ; 40(1): 111030, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793627

RESUMO

The foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule. Mutations at ZFER, PBL, and Pocket affect FMDV 2C ATPase activity and are lethal to FMDV infectious clones. Because the PBL-Pocket interaction between FMDV 2C molecules is essential for its functions, we design an anti-FMDV peptide derived from PBL (PBL-peptide). PBL-peptide inhibits FMDV 2C ATPase activity, binds FMDV 2C with nanomolar affinity, and disrupts FMDV 2C oligomerization. FMDV 2C targets lipid droplets (LDs) and induces LD clustering in cells, and PBL-peptide disrupts FMDV 2C-induced LD clustering. Finally, we demonstrate that PBL-peptide exhibits anti-FMDV activity in cells.


Assuntos
Vírus da Febre Aftosa , Picornaviridae , Adenosina Trifosfatases/metabolismo , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Picornaviridae/metabolismo , Domínios Proteicos , Proteínas não Estruturais Virais/metabolismo
12.
Front Microbiol ; 13: 856574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572704

RESUMO

Human enterovirus infections are mostly asymptomatic and occasionally could be severe and life-threatening. The conserved non-structural 2C from enteroviruses protein is a promising target in antiviral therapies against human enteroviruses. Understanding of 2C-drug interactions is crucial for developing the potential antiviral agents. While functions of enterovirus 2C proteins have been widely studied, three-dimensional structure information of 2C is limited. In this study, the structures of 2C proteins from 20 enteroviruses were simulated and reconstructed using I-TASSER programs. Subsequent docking studies of the known 22 antiviral inhibitors for 2C proteins were performed to uncover the inhibitor-binding characteristics of 2C. Among the potential inhibitors, the compound hydantoin exhibited the highest broad-spectrum antiviral activities with binding to 2C protein. The anti-enteroviral activity of GuaHCL, compound 19b, R523062, compound 12a, compound 12b, quinoline analogs 12a, compound 19d, N6-benzyladenosine, dibucaine derivatives 6i, TBZE-029, fluoxetine analogs 2b, dibucaine, 2-(α-hydroxybenzyl)-benzimidazole (HBB), metrifudil, pirlindole, MRL-1237, quinoline analogs 10a, zuclopenthixol, fluoxetine, fluoxetine HCl, and quinoline analogs 12c showed a trend of gradual decrease. In addition, the free energy with 22 compounds binding to EV 2C ranged from -0.35 to -88.18 kcal/mol. Our in silico studies will provide important information for the development of pan-enterovirus antiviral agents based on 2C.

13.
Virol Sin ; 37(5): 656-663, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35589079

RESUMO

RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs.


Assuntos
Enterovirus Humano B , RNA Helicases , Animais , Enterovirus Humano B/genética , Nucleosídeo-Trifosfatase/genética , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
14.
J Pineal Res ; 73(1): e12804, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35488179

RESUMO

Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.


Assuntos
Manihot , Melatonina , Animais , Ritmo Circadiano , Estudo de Associação Genômica Ampla , Manihot/genética , Melatonina/metabolismo , Plantas/metabolismo
15.
Plant Sci ; 314: 111127, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895535

RESUMO

Serine/threonine protein phosphatases play essential roles in plants. PP2C has diverse functions related to development and stress response, while little is known about the functions of PP2C genes with respect to a variety of stresses in maize. In the present study, three ZmPP2C genes, ZmPP2C55, ZmPP2C28, and ZmPP2C71, were identified. Subcellular localization demonstrated that ZmPP2C28 and ZmPP2C71 were nuclear proteins, and ZmPP2C55 was located in both the nucleus and cytoplasm. qRT-PCR analysis showed that ZmPP2C55, ZmPP2C28, and ZmPP2C71 were expressed in roots, leaves and stems, and the three genes were responsive to drought, salt, high-temperature stress and exogenous ABA treatment. To explore the function of the ZmPP2C gene, ZmPP2C55-overexpressing transgenic lines were generated. The transgenic plants exhibited higher RWC, proline content, POD and SOD activities, GSH content and GSH/GSSG ratio and lower MDA content, electrolyte leakage and GSSG content compared with WT plants under natural stress treatment when seedlings were at the three-leaf. Our results illustrated that the overexpression of ZmPP2C55 positively enhanced tolerance to drought stress.


Assuntos
Adaptação Fisiológica/genética , Desidratação/fisiopatologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
16.
J Pineal Res ; 72(2): e12784, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936113

RESUMO

Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.


Assuntos
Manihot , Melatonina , Resistência à Doença , Humanos , Melatonina/metabolismo , Doenças das Plantas/microbiologia
17.
Front Genet ; 12: 770014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858482

RESUMO

Type 2C protein phosphatase (PP2C) plays an essential role in abscisic acid (ABA) signaling transduction processes. In the current study, we identify 719 putative PP2C genes in eight Rosaceae species, including 118 in Chinese white pear, 110 in European pear, 73 in Japanese apricot, 128 in apple, 74 in peach, 65 in strawberry, 78 in sweet cherry, and 73 in black raspberry. Further, the phylogenetic analysis categorized PbrPP2C genes of Chinese white pear into twelve subgroups based on the phylogenic analysis. We observed that whole-genome duplication (WGD) and dispersed gene duplication (DSD) have expanded the Rosaceae PP2C family despite simultaneous purifying selection. Expression analysis finds that PbrPP2C genes have organ-specific functions. QRT-PCR validation of nine PbrPP2C genes of subgroup A indicates a role in ABA-mediated response to abiotic stress. Finally, we find that five PbrPP2C genes of subgroup A function in the nucleus. In summary, our research suggests that the PP2C family functions to modulate ABA signals and responds to abiotic stress.

18.
Plant Mol Biol ; 107(6): 499-517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34596817

RESUMO

KEY MESSAGE: GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.


Assuntos
Secas , Gossypium/enzimologia , Gossypium/fisiologia , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2C/metabolismo , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Modelos Biológicos , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Proteína Fosfatase 2C/genética , Estresse Fisiológico/genética
19.
J Virol Methods ; 298: 114298, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560110

RESUMO

Enterovirus A (EV-A) species are the main agents responsible for hand, foot, and mouth disease (HFMD), a serious public health concern. Lack of appropriate reagents prevents the mechanistic study of these virus infections. 2C protein, a non-structural protein of Enterovirus, is crucial for viral replication and antiviral immunity. Here, preparation and testing of a monoclonal antibody by immunizing mice with Coxsackievirus A10 protein 2C (CVA10-2C) was reported. This antibody could identify most EV-A types, both conventional and unconventional groups. We also mapped the antibody epitope SLATGIIARA, which is highly conserved in EV-A species and located in the ATPase domain. Some key amino acids include G140, I141, I142, and R144. In conclusion, we generated a recombinant monoclonal antibody against multiple EVA types and confirmed its performance, which may facilitate the future study of Enterovirus A infection and many potential applications, such as the diagnosis of pathogen or the development of antiviral therapies.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Anticorpos Monoclonais , Epitopos , Camundongos
20.
Biotechnol Lett ; 43(5): 1089-1102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751277

RESUMO

OBJECTIVES: To study the possible roles of type-2C protein phosphatases (PP2Cs) which have been confirmed to play roles in the response to diverse abiotic stresses in paper mulberry, we launched a series of genomic and functional studies of BpPP2Cs. RESULTS: Sixty-three PP2C proteins in paper mulberry (Broussonetia papyrifera) were classified into 13 clades. Four BpPP2Cs with kinase domains were verified to be highly conserved in organisms ranging from algae to dicots. Seven pairs of BpPP2C genes were found to be expanding, and 18 BpPP2C genes had orthologues in Arabidopsis. BpPP2Cs showed broad expression in different tissues; the expression levels of 18 BpPP2Cs were changed and the phosphorylation levels of seven BpPP2C proteins increased at low temperature. Cold-response elements were found in the promoter region of 31 BpPP2Cs. Finally, Bp01g0320 was found to act as a hub protein and Bp01g0512 and Bp09g1278 played key roles in the ABA-signaling pathway and MAPK cascades, respectively. CONCLUSION: These results suggest that the PP2C gene family of paper mulberry is evolutionarily conserved and participates the regulation of the response to cold stress, which will play a vital role in further research on phosphatases in paper mulberry.


Assuntos
Broussonetia/fisiologia , Resposta ao Choque Frio , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Broussonetia/classificação , Broussonetia/genética , Broussonetia/metabolismo , Mapeamento Cromossômico , Resposta ao Choque Frio/genética , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta/genética , Família Multigênica , Fosfoproteínas Fosfatases/genética , Fosforilação , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Mapas de Interação de Proteínas , Transdução de Sinais , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA