Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687000

RESUMO

Advanced packaging technology has become more and more important in the semiconductor industry because of the benefits of higher I/O density compared to conventional soldering technology. In advanced packaging technology, copper-copper (Cu-Cu) bonding has become the preferred choice due to its excellent electrical and thermal properties. However, one of the major challenges of Cu-Cu bonding is the high thermal budget of the bonding process caused by Cu oxidation, which can result in wafer warpage and other back-end-of-line process issues in some cases. Thus, for specific applications, reducing the thermal budget and preventing Cu oxidation are important considerations in low-temperature hybrid bonding processes. This paper first reviews the advancements in low-temperature Cu-based bonding technologies for advanced packaging. Various low-temperature Cu-Cu bonding techniques such as surface pretreatment, surface activation, structure modification, and orientation control have been proposed and investigated. To overcome coplanarity issues of Cu pillars and insufficient gaps for filling, low-temperature Cu-Cu bonding used, but it is still challenging in fine-pitch applications. Therefore, low-temperature Cu/SiO2, Cu/SiCN, and Cu/polymer hybrid bonding have been developed for advanced packaging applications. Furthermore, we present a novel hybrid bonding scheme for metal/polymer interfaces that achieves good flatness and an excellent bonding interface without the need for the chemical mechanical polishing (CMP) process.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903745

RESUMO

This study proposed a novel source/drain (S/D) extension scheme to increase the stress in nanosheet (NS) field-effect transistors (NSFETs) and investigated the scheme by using technology-computer-aided-design simulations. In three-dimensional integrated circuits, transistors in the bottom tier were exposed to subsequent processes; therefore, selective annealing, such as laser-spike annealing (LSA), should be applied. However, the application of the LSA process to NSFETs significantly decreased the on-state current (Ion) owing to diffusionless S/D dopants. Furthermore, the barrier height below the inner spacer was not lowered even under on-state bias conditions because ultra-shallow junctions between the NS and S/D were formed far from the gate metal. However, the proposed S/D extension scheme overcame these Ion reduction issues by adding an NS-channel-etching process before S/D formation. A larger S/D volume induced a larger stress in the NS channels; thus, the stress was boosted by over 25%. Additionally, an increase in carrier concentrations in the NS channels improved Ion. Therefore, Ion increased by approximately 21.7% (37.4%) in NFETs (PFETs) compared with NSFETs without the proposed scheme. Additionally, the RC delay was improved by 2.03% (9.27%) in NFETs (PFETs) compared with NSFETs using rapid thermal annealing. Therefore, the S/D extension scheme overcame the Ion reduction issues encountered in LSA and significantly enhanced the AC/DC performance.

3.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771919

RESUMO

In microelectronic packaging technology for three-dimensional integrated circuits (3D ICs), Cu-to-Cu direct bonding appears to be the solution to solve the problems of Joule heating and electromigration (EM) in solder microbumps under 10 µm in diameter. However, EM will occur in Cu-Cu bumps when the current density is over 106 A/cm2. The surface, grain boundary, and the interface between the Cu and TiW adhesion layer are the three major diffusion paths in EM tests, and which one may lead to early failure is of interest. This study showed that bonding strength affects the outcome. First, if the bonding strength is not strong enough to sustain the thermal mismatch of materials during EM tests, the bonding interface will fracture and lead to an open circuit of early failure. Second, if the bonding strength can sustain the bonding structure, voids will form at the passivation contact area between the Cu-Cu bump and redistribution layer (RDL) due to current crowding. When the void grows along the passivation interface and separates the Cu-Cu bump and RDL, an open circuit can occur, especially when the current density and temperature are severe. Third, under excellent bonding, when the voids at the contact area between the Cu-Cu bump and RDL do not merge together, the EM lifetime can be more than 5000 h.

4.
Front Neurosci ; 15: 690208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248491

RESUMO

Spiking Neuromorphic systems have been introduced as promising platforms for energy-efficient spiking neural network (SNNs) execution. SNNs incorporate neuronal and synaptic states in addition to the variant time scale into their computational model. Since each neuron in these networks is connected to many others, high bandwidth is required. Moreover, since the spike times are used to encode information in SNN, a precise communication latency is also needed, although SNN is tolerant to the spike delay variation in some limits when it is seen as a whole. The two-dimensional packet-switched network-on-chip was proposed as a solution to provide a scalable interconnect fabric in large-scale spike-based neural networks. The 3D-ICs have also attracted a lot of attention as a potential solution to resolve the interconnect bottleneck. Combining these two emerging technologies provides a new horizon for IC design to satisfy the high requirements of low power and small footprint in emerging AI applications. Moreover, although fault-tolerance is a natural feature of biological systems, integrating many computation and memory units into neuromorphic chips confronts the reliability issue, where a defective part can affect the overall system's performance. This paper presents the design and simulation of R-NASH-a reliable three-dimensional digital neuromorphic system geared explicitly toward the 3D-ICs biological brain's three-dimensional structure, where information in the network is represented by sparse patterns of spike timing and learning is based on the local spike-timing-dependent-plasticity rule. Our platform enables high integration density and small spike delay of spiking networks and features a scalable design. R-NASH is a design based on the Through-Silicon-Via technology, facilitating spiking neural network implementation on clustered neurons based on Network-on-Chip. We provide a memory interface with the host CPU, allowing for online training and inference of spiking neural networks. Moreover, R-NASH supports fault recovery with graceful performance degradation.

5.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322344

RESUMO

In this paper, the poly-Si nanowire (NW) field-effect transistor (FET) sensor arrays were fabricated by adopting low-temperature annealing (600 °C/30 s) and feasible spacer image transfer (SIT) processes for future monolithic three-dimensional integrated circuits (3D-ICs) applications. Compared with other fabrication methods of poly-Si NW sensors, the SIT process exhibits the characteristics of highly uniform poly-Si NW arrays with well-controlled morphology (about 25 nm in width and 35 nm in length). Conventional metal silicide and implantation techniques were introduced to reduce the parasitic resistance of source and drain (SD) and improve the conductivity. Therefore, the obtained sensors exhibit >106 switching ratios and 965 mV/dec subthreshold swing (SS), which exhibits similar results compared with that of SOI Si NW sensors. However, the poly-Si NW FET sensors show the Vth shift as high as about 178 ± 1 mV/pH, which is five times larger than that of the SOI Si NW sensors. The fabricated poly-Si NW sensors with 600 °C/30 s processing temperature and good device performance provide feasibility for future monolithic three-dimensional integrated circuit (3D-IC) applications.

6.
Sci Technol Adv Mater ; 18(1): 693-703, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057024

RESUMO

The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA